
A New Total Injection Betting Strategy

Stijn Vermeeren

School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom,
mmsv@leeds.ac.uk

Abstract. I give a direct construction of a partial computably random
sequence Z that is not total injection random. The total injection betting
strategy that succeeds on Z, directly approximates the supermartingale
used to make Z partial computably random.

Amongst infinite sequences of 0’s and 1’s there are some that are very regular,
like

0101010101010101 . . .

whereas others seem quite random, such as a sequence beginning with

0110110001011001 . . .

Yet from a probabilistic point of view, both sequences are equally likely as out-
comes of a random experiment, such as a repeated fair coin toss. Algorithmic
randomness can be used to solve this paradox. In algorithmic randomness, com-
putability theory is used to define what is to be considered a regularity in a
sequence, and which sequences can be said to be truly random. The exact defini-
tion, however, can be done in many different ways that all make sense, without
there being one definition that is obviously superior. Hence, the study of the
relative strength of the many definitions of randomness has attracted a lot of
attention over the years. The question whether Kolmogorov-Loveland random-
ness implies Martin-Löf randomness or not, is the most notable open problem in
this area. In this article, I investigate the relative strength of two slightly weaker
notions: total injection randomness and partial computable randomness. These
notions were proven to be incomparable in 2009 by Bienvenu, Hölzl, Kräling and
Merkle [1], who studied the initial segment complexity of random sequences of
the different types. I will give a new construction of a partial computable random
sequence Z that is not total injection random. My construction is more direct,
as the total injection betting strategy that succeeds on Z directly approximates
the supermartingale used to construct Z.

1 Notation

In this article I will consider infinite sequences of 0’s and 1’s, which can be treated
as elements of 2ω (i.e. functions N = {0, 1, 2, · · · } → {0, 1}). Such sequences will
be represented by capital letters, usually Z.

I will also use finite strings of 0’s and 1’s, which can be treated as elements
of 2n (i.e. functions n = {0, 1, · · · , n − 1} → {0, 1}) for some n ∈ N. I will use
lowercase Greek letters (usually σ or τ) to represent strings. If σ ∈ 2n, then
|σ| = n is called the length of the string. The unique empty string of length 0 is
written ∅, and στ is the string of length |σ| + |τ | obtained by concatenating σ

and τ . The set of strings of length less than or equal to n is written 2≤n. 2<ω is
the set of all finite strings of any length.

If f is a function, then f ↾A is the restriction of f to the domain A. In
particular, if Z ∈ 2ω, then Z↾n∈ 2n is the initial segment of Z of length n.

I fix a computable pairing function 〈·, ·〉, i.e. a computable bijection

〈·, ·〉 : N× N → N.

So 〈n0, n1〉 is a natural number that encodes the ordered pair (n0, n1). This can
be extended to k-tuples for any k, by defining inductively

〈n0, n1, . . . , nk−1〉 = 〈n0, 〈n1, . . . , nk−1〉〉.

I assume that the reader is familiar with the basic ideas and conventions of
computability theory. I use square brackets [s] to indicate that computations are
only approximated up to that stage s. Familiarity with algorithmic randomness
is not strictly required, but will be helpful to understand the proofs and to see
the results in context. For background reading on algorithmic randomness, see
[7] or [2].

2 Computable Randomness

Computable randomness is one of the most fundamental notions of randomness.
It is appealing because it has a very natural definition, motivated by the fact that
we expect the digits of a random sequence to be unpredictable. This is captured
by requiring that one cannot make an unbounded profit by betting on the value
of successive digits of the random sequence. More precisely, a betting strategy
starts with a certain amount of money (capital), and can then place bets on the
digits of an infinite sequence. Placing a bet on a digit means assigning a part of
the current capital to the outcome 0 and another part to the outcome 1. The
money placed on the correct outcome is doubled, but the money placed on the
incorrect value is lost. A betting strategy starts by placing a bet on the first
digit, which is evaluated, and losses are subtracted from or gains added to the
capital. With the new capital, the betting strategy can then place a bet on the
second digit, which is allowed to depend on the value of the first digit, which
was already evaluated. And so on. A betting strategy succeeds on an infinite
sequence Z if the betting strategy makes unbounded profits when betting on
the digits of Z. A sequence Z is computably random if no computable betting
strategy succeeds on Z.

The best way to treat a betting strategy as a mathematical object, is by
using martingales. For any betting strategy, we can consider a capital function

B that maps each string σ ∈ 2<ω to the amount of money the betting strategy
has after betting on σ. Thus we have a function

B : 2<ω → R≥0

that satisfies

B(σ) =
B(σ0) +B(σ1)

2
(1)

for all strings σ. Any such function is called a martingale. Equation (1) is a
fairness condition: the expected value of the new capital must be equal to the
initial capital. Any betting strategy, as above, gives rise to a martingale, and
every martingale corresponds to a betting strategy. A martingale B succeeds on
a sequence Z if

lim sup
n→∞

B(Z↾n) = ∞. (2)

A sequence Z is computably random (CR) if no computable martingale (that
is: a martingale which is computable as a function 2<ω → R≥0) succeeds on Z.

Note 1. – We can loosen the requirement (1) to an inequality:

B(σ) ≥
B(σ0) +B(σ1)

2
. (3)

Any function B : 2<ω → R≥0 satisfying just this inequality is called a
supermartingale. Supermartingales do not succeed on more sequences than
ordinary martingales, because the only thing they can do more in terms of
betting strategies, is to throw away some money at each bet.

– Infinite profits could be formalized using lim instead of lim sup, without
changing the notion of computable randomness. This is justified by a lemma
called the savings trick. (See e.g. [2], 6.3.8 or [7], 7.1.14)

– We can assume that any (super)martingale has only rational values, where
we represent a rational number as a pair of natural numbers (numerator
and denominator). Indeed we can effectively approximate each computable
(super)martingale B : 2<ω → R≥0 with a computable (super)martingale
D : 2<ω → Q≥0 such that whenever B succeeds on Z, then also D succeeds
on Z. The important advantage of using rational values is that equality of
rational numbers is decidable. ([9,10]; see also [2], 7.1.2 or [7])

The notion of computable randomness can be strengthened in two directions:
by allowing partial computable martingales and by allowing nonmonotonic mar-
tingales.

A partial martingale is a partial function B : 2<ω → R≥0 that still satisfies
the fairness condition

B(σ) =
B(σ0) +B(σ1)

2
(4)

when all values involved are defined. Some values of B may be undefined (the
betting strategy might be forever undecided on certain bets). But once either

value on the right hand side in (4) is defined, both other values in the equation
must be defined (we can only bet on the next digit after σ, if we know how much
money we have at σ, and once we know how much money we want to make with
some outcome, we also know how much money we still have left for the other
outcome). Success for a partial martingale B on a sequence Z is defined exactly
like for total martingales:

lim sup
n→∞

B(Z↾n) = ∞, (5)

where now we obviously require that B is defined on all initial segments of Z. A
sequence Z is partial computably random (PCR) if no partial computable
martingale succeeds on Z.

The second variation on computable randomness is to allow betting on the
digits of a sequence in a non-monotonic order. That is, we might be able to bet
on the second digit first, and depending on that outcome, we can decide how
to bet on the first digit. It is not important to bet on all digits of a sequence;
we can ignore certain digits anyway by betting evenly on them, such that our
capital stays the same no matter what the digit’s value is. The order in which to
bet on the digits can be fixed in advance, e.g. by a computable permutation or
injection. A (partial) computable permutation/injection betting strategy is then
a pair 〈f,B〉 of a computable permutation/injection f : N → N and a (partial)
computable martingale B. Such a betting strategy 〈f,B〉 succeeds on Z if

lim sup
n→∞

B((Z ◦ f)↾n) = ∞. (6)

This gives rise to the notions of partial/total permutation randomness
(PPR/TPR) and partial/total injection randomness (PIR/TIR). (Total
permutation randomness will in fact turn out to be equivalent with computable
randomness.) We can take the nonmonotonicity even further by not fixing the
order in advance. Instead we choose the next digit to bet on, only after observing
the outcome of the previous bet. This gives rise to the notion of Kolmogorov-
Loveland randomness (KLR), of which the partial and total variants are
equivalent.

All of the remarks in Note 1 are also valid for all partial and nonmonotonic
notions of computable randomness.

I will look at the relative strength of all of these randomness notions in the
final section of this article.

3 Theorem and sketch of proof

Theorem 1. There is a PCR sequence, which is not TIR.

To make the sequence PCR, I use a fairly well-known method. The i’th
partial computable martingale Bi is only activated from position ni onwards,
where (ni) is an ascending sequence of natural numbers. Then we add up all the

martingales into one supermartingale L. L will not be computable, but we will
be able to approximate L by approximating all of the martingales Bi. From L

we are able to pick a PCR sequence Z in a canonical way. The only unusual
element in this part of the construction, is the fact that the sequence (ni) will
not be computable.

To define a total injection betting strategy that succeeds on Z, we associate
with each position in Z some guess about the halting/non-halting of certain mar-
tingale computations. The injection betting strategy then starts to approximate
all the partial computable martingales, and consequently obtains approxima-
tions to L and to Z. If at some stage of the approximation, the guess for some
position seems correct, the injection betting strategy jumps to this position and
bets that the current approximation to Z at that position is also correct.

We now need to define these guesses so that the bets are often enough correct.
In a first attempt, we might try to include in the guess associated with position
k, all the information on halting/non-haling of all martingale computations up
to position k, of all martingales that are active at this position. This certainly
makes sure that if the guess for position k is correct, then the approximation
to Z will be correct by the time we bet on position k. This approach however,
makes the amount of information that we need to guess grow quickly as the
position increases. Therefore, we cannot guarantee that many of the guesses
that we include are actually correct.

The solution comes from the realization that the guesses don’t need to con-
tain so much information at all. In fact, it is sufficient to guess how many of the
active martingales are total along Z. Now the size of the guesses doesn’t increase
with the position at all, it only increases if we activate a new martingale. So we
can guarantee that the guess is correct at infinitely many positions. Moreover
we can make sure that, for any fixed number of active martingales, our bets
will be correct at sufficiently large positions with correct guesses. However, it is
not computable exactly how large is sufficient, and we need to make sure that
we don’t activate a new martingale before we have made any profit with the
previously active martingales. This is why the sequence (ni), which determines
how quickly martingales are activated, cannot be computable in this construc-
tion. This in turn makes it necessary to include all possible values for ni (for the
martingales that we presume to be active) into our guesses, in order to be able
to approximate these martingales correctly.

The details of the proof are given in the next sections.

4 Diagonalizing against Partial Computable Betting

Strategies

We want to construct a sequence Z that is PCR. That is: no partial computable
betting strategy may succeed on Z. Therefore we need to diagonalize against all
partial computable martingales with some fixed starting capital, say 1. To do
this, we start by taking an effective enumeration {B0, B1, · · · } of all partial com-
putable martingales with initial capital 1. (The enumeration must be effective

in the sense that in the sense that Bk(σ) must be computable from k and σ. See
e.g. [7] on how to obtain such an enumeration.) We want to add up all of these
martingales into one new supermartingale L. Undefined martingale values can
be taken equal to 0 in this addition. For the benefit of the total injection betting
strategy that needs to succeed on Z, we must be able to easily approximate L.
In particular, we need to avoid infinite sums in the definition of L. We achieve
this by fixing an increasing sequence of natural numbers (nk), and by applying
the martingale Bk only from position nk onwards. Now, at any position, only
finitely many martingales are active. Consequently, to compute any value of L,
we only need to add together finitely many terms.

Formally, we define

Vk(σ) =

1 if |σ| ≤ nk
Bk(σ)

Bk(σ↾nk
) if |σ| > nk, Bk(σ)↓ and Bk(σ↾nk

) > 0

0 otherwise,

and

L(σ) =
∑

k∈N

2−kVk(σ)

for all strings σ ∈ 2<ω. Then L is a well-defined supermartingale. Moreover, if
any Bk succeeds on Z, then also Vk and L succeed on Z. So if we choose Z

such that L fails on Z, then Z is PCR. This can be done by taking Z to be the
left-most non-ascending path on L considered as a tree, i.e. if Z ↾n is defined,
then we take

Z(n) =

{

0 if L(Z↾n 0) ≤ L(Z↾n)
1 otherwise.

In the second case, as L is a supermartingale, we have L(Z↾n 1) ≤ L(Z↾n). Hence
lim supn→∞ B(Z↾n) ≤ L(∅) and L fails on Z, as required. The PCR sequence
that we thus obtain from a given choice of (nk) will be called Z(nk).

The techniques for constructing PCR sequences outlined above are well-
known. In particular, look at [7] for more explanations and applications.

5 A Total Injection Betting Strategy That Succeeds

5.1 Approximations for L and Z

We claim that, for a suitable choice of (nk), the PCR sequence Z(nk) is not TIR.
To prove this, we construct a total injection betting strategy that succeeds on
Z(nk). The sequence (nk) will not be computable, so the betting strategy will
have to guess the values of (nk). Hence we introduce the following notation:

Vk,n(σ) =

1 if |σ| ≤ n
Bk(σ)
Bk(σ↾n)

if |σ| > n, Bk(σ)↓ and Bk(σ↾n) > 0

0 otherwise,

for any k, n ∈ N, and

L
〈n0,...,ni−1〉
i =

i−1
∑

k=0

2−kVk,nk
.

Also, all computations in our strategy need to halt, so we need to approximate
as follows:

Vk,n[s](σ) =

1 if |σ| ≤ n
Bk(σ)
Bk(σ↾n)

if |σ| > n, Bk[s](σ)↓, and Bk(σ↾n) > 0

0 otherwise,

and

L
〈n0,...,ni−1〉
i [s] =

i−1
∑

k=0

2−kVk,nk
[s].

So L
〈n0,...,ni−1〉
i [s] sums only the first i martingales, computed up to stage s, and

it uses given values for the sequence (nk).

We let Z
〈n0,...,ni−1〉
i be the left-most non-ascending path of L

〈n0,...,ni−1〉
i , and

Z
〈n0,...,ni−1〉
i [s] the left-most non-ascending path of L

〈n0,...,ni−1〉
i [s]. Our betting

strategy will use these Z
〈n0,...,ni−1〉
i [s] (which are computable) as guesses for the

actual Z.

5.2 The Injection

As PCR implies TPR, we need to make essential use of the fact that we are al-
lowed to bet on the positions of Z(nk) in an order given by a computable injection.
Equivalently, the order may be given by a computable enumeration of an infinite
subset of N. We achieve this by uniformly assigning a computation to each k ∈ N,
and by betting on position k at the stage that the computation corresponding
to k terminates, if ever. In particular, we will bet on k = 〈i, 〈n0, . . . , ni−1〉, l,m〉
at the first stage s that

∣

∣

∣

{

j ∈ {0, . . . , i− 1} : Bj [s]
(

Z
〈n0,...,ni−1〉
i [s]↾k+1

)

↓
}∣

∣

∣ = l.

At this point, and if i has a value that we are still interested in, we will guess that

all computations involved in defining Z
〈n0,...,ni−1〉
i ↾k that converge, have halted

by stage s; hence we will bet on Z
〈n0,...,ni−1〉
i [s](k) = Z(nk)(k). Under certain

conditions, this guess is guaranteed to be correct. In particular the following
lemma holds:

Lemma 1. Suppose that

(a) l =
∣

∣

∣

{

j ∈ {0, . . . , i− 1} : Bj is defined along Z
〈n0,...,ni−1〉
i

}∣

∣

∣
, and

(b) m is sufficiently large.

Let k = 〈i, 〈n0, . . . , ni−1〉, l,m〉. Then there is a stage s such that
∣

∣

∣

{

j ∈ {0, . . . , i− 1} : Bj [s]
(

Z
〈n0,...,ni−1〉
i [s]↾k+1

)

↓
}∣

∣

∣ = l. (7)

Moreover, at this stage we have

Z
〈n0,...,ni−1〉
i [s](k) = Z

〈n0,...,ni−1〉
i (k).

Proof. We abbreviate Zi = Z
〈n0,...,ni−1〉
i .

There are only finitely many n ∈ N such that Bj(Zi ↾n) ↓ for some j ∈
{0, . . . , i− 1} such that Bj is not defined along Zi. Let N be the maximal such
n. Let s0 be the first stage such that

Bj [s](Zi↾n)↓ if and only if Bj(Zi↾n)↓

for all j ∈ {0, . . . , i− 1} and all n ≤ N .
Given (a), (7) will hold for s large enough. But note that the larger we take

m, the larger k is, and the longer it will take for (7) to hold. So we can take m

large enough to have k > N and s ≥ s0.
By choice of N , s0 and m, we have

Zi↾N= Zi[s]↾N ,

and Bj(Zi↾N 0)↑ and Bj(Zi↾N 1)↑ for all j ∈ {0, . . . , i− 1} such that Bj is not
defined along Zi. Hence, when (7) holds, we must have

{j ∈ {0, . . . , i− 1} : Bj [s] (Zi[s]↾k+1)↓}

⊆ {j ∈ {0, . . . , i− 1} : Bj is defined along Zi}

and by (a) this is actually an equality. This means that all computations involved
in defining Zi↾k+1 have halted by stage s, so the guess

Zi[s](k) = Zi(k)

is correct. ⊓⊔

5.3 The Betting Strategy

We are now ready to define the sequence (nk) and the total injection strat-
egy that will succeed on Z(nk). We have already defined the computable in-
jection above. Now we partition the initial capital; to every natural number
j = 〈i, 〈n0, . . . , ni−1〉, l〉 we assign a fraction 2−j−1 of our starting capital. When
we are asked to bet on k = 〈i, 〈n0, . . . , ni−1〉, l,m〉, we will only use the capital
assigned to the number 〈i, 〈n0, . . . , ni−1〉, l〉. In particular, if we are asked to bet
on this position k at stage s, then we will put 3

4 of this capital on the outcome

Z
〈n0,...,ni−1〉
i [s](k) and 1

4 of this capital on the other outcome. Once the capi-
tal assigned to some 〈i, 〈n0, . . . , ni−1〉, l〉 exceeds 1, we start betting evenly on
positions with this value of i, and we say that the substrategy for i has succeeded.

Note 2. The substrategy for i is certain to succeed when betting on Z
〈n0,...,ni−1〉
i .

Indeed, by Lemma 1, when l has the right value andm is big enough, then at some
point we will bet on position k = 〈i, 〈n0, . . . , ni−1〉, l,m〉 and this bet is guaran-
teed to be successful, i.e. to increase the capital assigned to 〈i, 〈n0, . . . , ni−1〉, l〉
with a factor 3

2 . So the capital assigned to 〈i, 〈n0, . . . , ni−1〉, l〉 will exceed 1 if
we go on long enough.

Note 3. If the substrategy for i succeeds when betting on Z
〈n0,...,ni−1〉
i , and the

highest position that the strategy has bet on before succeeding is position k,
then the substrategy will run exactly the same, and hence also succeed at the
same point, on any sequence Y with Y ↾k+1= Z↾k+1. In particular, if

k < ni < ni+1 < ni+2 < . . . ,

then the substrategy for i will run exactly the same on Z
〈n0,...,nj−1〉
j for any j ≥ i,

and also on Z(nk).

5.4 The Sequence (nk)

We now recursively define nk by letting n0 = 0 and taking

ni = 1 +

Highest position that the strategy has bet on after the
substrategies for 0, . . . , i−1 have succeeded when betting

on Z
〈n0,...,ni−1〉
i

 .

By Note 2, these substrategies indeed all succeed, so the sequence is well-defined.
Moreover, by Note 3, the substrategies all succeed on Z(nk), as well. So the
total injection betting strategy succeeds on Z(nk), as there are infinitely many
substrategies, that with disjoint parts of the initial capital, all generate one unit
of money. This concludes the proof of theorem 1.

6 The Bigger Picture

The first real notion of algorithmic randomness was Martin-Löf randomness
(MLR), introduced by Martin-Löf in 1966 [4]. Schnorr argued that the tests used
to define nonrandom sequences in Martin-Löf randomness are too strong to be
considered effective. He proposed two important weaker notions of randomness,
now known as Schnorr randomness (SR) and computable randomness [9,10].
Computable randomness, as well as all variations introduced in section 3 of this
article, are weaker than MLR but stronger than SR. Two nontrivial implications
hold between these notions: TPR is equivalent to CR (See e.g. [3] or [7], 7.6.24)
and the partial and total versions of KLR are also equivalent ([5]; see also [2],
7.5.4 or [7], 7.6.25).

PCR and KLR are the variations of computable randomness that have been
studied best. Among the most interesting results involving these notions, are
the constructions by Nies, Stephan and Terwijn [8] of a sequence that is CR

but not PCR, and a sequence that is SR but not CR, where both sequences
can be constructed in any high Turing degree. This is the best possible, since in
all nonhigh Turing degrees Schnorr randomness implies MLR [8], collapsing all
notions of computable randomness.

The most important open problem in this area is whether MLR is strictly
stronger than KLR, or whether both notions are equivalent. Injection and per-
mutation randomness were introduced by Miller and Nies [6], in the hope that it
would be possible to construct an injection/permutation random sequence that
is not MLR, thereby providing a stepping stone towards separating KLR from
MLR. This was indeed recently achieved by Kastermans and Lempp [3], who
separated MLR from PIR. This is the closest that anyone has come to solving
the “MLR versus KLR” question so far.

The relative strength of the different notions of computable randomness was
studied in detail by Bienvenu, Hölzl, Kräling and Merkle [1]. They constructed

– a PPR sequence that is not TIR,
– a TIR sequence that is not PCR,
– a PCR sequence that is not PPR,

thereby proving that no implications hold between the different computable ran-
domness notions, other than the ones metioned before, and possibly an implica-
tion from PIR to KLR.

All of this is summarized in Figure 1.
Theorem 1 of this article is already implied by the construction in [1] of a

PPR sequence that is not TIR. My construction however, is quite different from
the proof in [1], in which Kolmogorov complexity is central. In my construction,
the total injection betting strategy that succeeds on Z, directly approximates
the supermartingale used to make Z partial computably random. As such, the
idea of my construction appears more straightforward compared to the proof in
[1], although the many approximations up to some stage s make the verification
a little messy.

An interesting direction for future research, would be to investigate whether
the different constructions from [3], [1] and this article can be adapted to give
sequences in any high Turing degree, similar to the results from [8].

References

1. Bienvenu, L., Hölzl, R., Kräling, T., Merkle, W.: Separations of non-monotonic ran-
domness notions. 6th International Conference on Computability and Complexity
in Analysis (CCA 2009) (2009)

2. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. The-
ory and Applications of Computability, Springer (2011)

3. Kastermans, B., Lempp, S.: Comparing notions of randomness. Theoretical Com-
puter Science 411, 602–616 (2010)

4. Martin-Löf, P.: The definition of random sequences. Information and Control 9,
602–619 (1966)

5. Merkle, W.: The Kolmogorov-Loveland stochastic sequences are not closed under
selecting subsequences. Journal of Symbolic Logic 68, 1362–1376 (2003)

MLR
Martin-Löf

random

KLR
Kolmogorov

Loveland

random

PIR
partial

injection

random

PPR
partial

permutation

random

PCR
partial

computable

random

TIR
total

injection

random

TPR
total

permutation

random

=

CR
computable

random

SR
Schnorr

random

Stronger randomness notions
Stronger tests to find regularities

Weaker randomness notions
Weaker tests to find regularities

Fig. 1. The relative strength of computable randomness and related notions. No other
implications than the ones implied by the figure hold, except for possibly “PIR ⇒

KLR” or “KLR ⇒ MLR”, but certainly not both.

6. Miller, J.S., Nies, A.: Randomness and computability: open questions. Bulletin of
Symbolic Logic 12, 390–410 (2006)

7. Nies, A.: Computability and Randomness. Oxford University Press (2009)
8. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing de-

grees. Journal of Symbolic Logic 70, 515–535 (2005)
9. Schnorr, C.P.: A unified approach to the definition of a random sequence. Mathe-

matical Systems Theory 5, 246–258 (1971)
10. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine algoritmische Begründung

der Wahrscheinlichkeitstheorie, Lecture Notes in Mathematics, vol. 218. Springer-
Verlag (1971)

