
Notions and applications

of algorithmic randomness

Stijn Vermeeren

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Mathematics

March 2013

2

The candidate confirms that the work submitted is his own, except where

work which has formed part of jointly-authored publications has been in-

cluded. The contribution of the candidate and the other authors to this

work has been explicitly indicated below. The candidate confirms that ap-

propriate credit has been given within the thesis where reference has been

made to the work of others.

Chapter 5 consists mostly of joint work with Laurent Bienvenu, Andrei

Romashchenko, Alexander Shen and Antoine Taveneaux. The material will

be published in [4]. Initial investigations on the topic were made by Shen.

The research was then considerably widened when the other authors (in-

cluding the candidate) got involved. Most core results were obtained by all

authors together during a three week period of collaboration in France in

November 2011. Afterwards, the candidate proved another theorem himself

(Theorem 5.3.3), while the other authors contributed additional work as well.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the thesis may be published without

proper acknowledgement.

c©2013 The University of Leeds and Stijn Vermeeren

3

Acknowledgements

Thanks to my parents for their continuous support for my studies away from

home. Thanks to my supervisors, S. Barry Cooper and Andy E. M. Lewis,

for being always available and helpful, while also leaving me enough freedom

to discover and pursue my own interests. Thanks to my fellow PhD students

for their friendship, knowledge, but most of all for the sense of not being

in it alone. Thanks to Laurent Bienvenu, Andrei Romashchenko, Alexander

Shen and Antoine Taveneaux for a fruitful three weeks of collaborating in

France. Thanks to the University of Leeds for providing me with the Uni-

versity Research Scholarship that funded this PhD. Thanks to the School of

Mathematics and to the Association for Symbolic Logic for providing me with

funding to attend conferences all over the world. Thanks to my examiners

Michael Rathjen and Wolfgang Merkle for their valuable corrections.

This thesis is dedicated to the memory of Graham Connell and to the

Leeds University Union Hiking Club.

4

Abstract

Algorithmic randomness uses computability theory to define notions of ran-

domness for infinite objects such as infinite binary sequences. The different

possible definitions lead to a hierarchy of randomness notions. In this thesis

we study this hierarchy, focussing in particular on Martin-Löf randomness,

computable randomness and related notions. Understanding the relative

strength of the different notions is a main objective. We look at proving im-

plications where they exists (Chapter 3), as well as separating notions when

the are not equivalent (Chapter 4). We also apply our knowledge about ran-

domness to solve several questions about provability in axiomatic theories

like Peano arithmetic (Chapter 5).

5

Contents

Acknowledgements . 3

Contents . 5

List of figures . 9

1 Introduction 11

2 Cantor space and computability theory 15

2.1 Basic notation and terminology 15

2.2 Cantor space and measure theory 17

2.3 Computability theory . 20

2.4 Kolmogorov complexity . 25

Plain complexity . 27

Prefix-free complexity . 31

Weak truth table completeness of Kolmogorov complexity 35

Conditional Kolmogorov complexity 36

3 Notions of randomness 39

3.1 Stochasticity . 40

Stochastic sequences . 41

Ville’s Theorem . 45

3.2 The typicality paradigm . 47

Martin-Löf randomness . 48

6

Schnorr randomness . 49

Kurtz randomness and weak n-randomness 51

Randomness and Turing completeness 53

3.3 The incompressibility paradigm 55

Chaitin’s Ω . 59

3.4 The unpredictability paradigm 62

Martingales and computable randomness 64

Lemmas about martingales 71

Relation with Martin-Löf, Schnorr and Kurtz randomness . 74

Partial and nonmonotonic computable randomness 80

3.5 Randomness and differentiability 85

Base-invariance of computable randomness 91

3.6 Randomness and ergodic theory 95

3.7 Comparison of stochasticity and randomness 97

From selection rules to martingales 98

From selection rules to randomness tests 100

Randomness versus stochasticity: Summary 105

Randomness and Ville’s theorem 107

4 Separating randomness notions 111

4.1 A sequence that is total computably random, but not partial

computably random . 113

4.2 A sequence that is partial computably random, but not total

injection random . 118

4.3 Other constructions . 124

Nies, Stephan and Terwijn 124

Kastermans and Lempp 125

4.4 Separations by initial segment complexity 126

7

Random sequences with low complexity 126

Lower bounds for the complexity of random sequences . . 129

Separations using complexity 131

5 Axioms about complexity 135

5.1 Chaitin’s result . 136

5.2 Machines that are provably universal 138

5.3 Axioms about strings of high complexity 141

5.4 Axioms expressing Martin-Löf randomness 147

More results about MLRc(Z) 151

Other theories related to MLRc(Z) 153

5.5 Axioms expressing 2-randomness 157

5.6 Axioms that give exact complexities 158

5.7 Summary . 160

Bibliography 160

8

9

List of Figures

1 Typical graph of the frequency of zeroes in the initial segments

of a random sequence. 46

2 Graph of the frequency of zeroes in the initial segments of a

sequence as constructed in Ville’s Theorem. 47

3 Example of a martingale. 65

4 The savings lemma. 68

5 The sawtooth functions and partial sums used to define the

blancmange function. 88

6 The relations between randomness and stochasticity notions. . 106

7 A one-on-one correspondence between certain walks on the

integers. 108

8 The complete one-on-one correspondence for certain walks on

the integers of length 6. 109

9 All known implications involving variations of computable ran-

domness. 112

10 Illustration to the construction of the sequence Z. 115

11 Summary of results about the strength of theories whose ax-

ioms express that certain strings have high complexities. . . . 160

10

11

Chapter 1

Introduction

With some infinite sequences of zeroes and ones, such as

0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . . , (1)

we immediately recognize that they satisfy a pattern or have a regularity.

Other sequences appear to follow no pattern at all, and we would call them

random. How can we turn this intuitive dichotomy into a rigorous mathe-

matical notion of randomness?

It is important to realize that we are looking for a notion that is much

stronger than incomputability. A sequence that is incomputable on its odd

positions and has a zero on every even position is still incomputable. How-

ever, having a zero on every even position is a very strong pattern, so this

sequence is certainly not random.

Randomness as it is used in statistics does not help us. Even though

we will feel very suspicious when we see the sequence (1) appear as the

result of a repeated coin toss (writing ‘0’ for heads and ‘1’ for tails), from

a probabilistic point of view this sequence of outcomes isn’t less probable

12

than any other. Statistical randomness is a notion that applies to variables

or processes. However, it does not give us a sensible notion for randomness

of individual sequences of zeroes and ones.

Computability theory provides the solution. Algorithmic randomness

uses computability theory in various ways to come up with mathematical

definitions of what exactly is a regularity in a sequence, i.e. which sequences

are random and which ones are not. Some of these definitions turn out to

be equivalent. However, often the notions defined by these definitions have

(sometimes very subtle) differences between them. A whole hierarchy of dif-

ferent randomness notions appears. Many aspects of this hierarchy are not

well understood yet. In this thesis, I have studied the properties of and the

relations between randomness notions, focussing in particular on computable

randomness and its variations. Additionally, the final chapter explores some

fascinating interactions between randomness and provability.

The principal new results in this thesis are

• the notion of weak Church stochasticity as defined in Section 3.1 and

further investigated in Section 3.7;

• the remarks on the problem of base-invariance of partial computable

randomness in Section 3.5, in particular Theorem 3.5.3;

• the proof of Theorem 4.2.1, providing a direct construction of a se-

quence that is partial computably random but not total injection ran-

dom;

• Chapter 5, which is joint work with Laurent Bienvenu, Andrei Ro-

mashchenko, Alexander Shen and Antoine Taveneaux. My most dis-

tinctive personal contribution to this work is Theorem 5.3.3.

Aside from presenting new results, I have also made an effort to give a

13

clear presentation of a good amount of background material, in particular

on the randomness and stochasticity notions in Figures 6 and 9, and on the

implications that exist between them. I hope that this will be of value, since

these results tend to be rather scattered in the available books on algorithmic

randomness. Some basic remarks, such as why blind computable randomness

is not a sensible randomness notion (Remark 3.4.4), don’t even appear in

the literature. Surely this is not because nobody has thought about these

questions; I rather suspect that people have just found these observations

to elementary to include them in their research papers. Still, these remarks

are certainly not trivial, so I’ve taken the opportunity to present them rigor-

ously in my thesis. This will hopefully serve as a useful reference for future

researchers in algorithmic randomness.

During the first years of my PhD, two books appeared on the subject of

algorithmic randomness: Computability and Randomness by André Nies [48]

and Algorithmic Randomness and Complexity by Rodney Downey and Denis

Hirschfeldt [16]. These monographs have collected an invaluable amount of

material that was previously scattered across many publications or not acces-

sible at all. It is likely that I would not have started research on algorithmic

randomness at all without these two fabulous resources available to ease my

path into the subject. As both books will undoubtedly remain an essen-

tial resource for generations to come, I have included numerous references

to them in this thesis. Where appropriate, I have provided results not only

with a reference to their original publication, but also with references to the

corresponding theorems or sections in Nies and/or Downey and Hirschfeldt.

Two more historical resources that are particularly interesting and deserve

to be mentioned here are Jean Ville’s 1939 PhD thesis [60] and Claus-Peter

Schnorr’s 1971 book Zufälligkeit und Wahrscheinlichkeit [53]. Both docu-

14

ments can be downloaded for free on the internet, if you know where to look

for them; I’ve included links in the bibliography of this thesis.

In this thesis, I generally use the pronoun ‘we’, as if the reader and me

are going through the mathematics together. For expressing my personal

opinions and for explaining certain decisions, however, I use the pronoun ‘I’

(such as in this paragraph).

15

Chapter 2

Cantor space and

computability theory

A basic knowledge of mathematical logic, computability theory and topology

will be assumed in this thesis. This chapter introduces a lot of background

material, but due to space constraints this can be no replacement for proper

textbooks such as [40], [15] and [47]. The principal aim of this chapter is to

establish terminology and notation. Some extra attention will be paid to a

couple of results that will have a key role further on in this thesis.

2.1 Basic notation and terminology

N = {0, 1, 2, . . .} is the set of nonnegative integers or natural numbers. Q is

the set of rational numbers and R is the set of real numbers.

If A and B are sets, then BA is the set of all functions with domain

A and codomain B. If f : A → B is such a function and C ⊆ A, then

f↾C : C → B is the restriction of f to the domain C.

A string is a finite sequence of symbols, which are elements of a fixed

16

finite set. We will mostly work with binary strings, where the only sym-

bols are 0 and 1. Indeed, when we don’t specify anything to the contrary,

string will always mean binary string. A string σ can be seen as a func-

tion {0, 1, . . . , n− 1} → {0, 1} from some finite initial segment of the natural

numbers to the set of symbols. The symbol at position i (i ∈ dom σ) is then

σ(i). The length |σ| of a string σ is the number of symbols, i.e. the size

of the domain of σ. There is a unique string of length 0, called the empty

string, which we denote by λ.

Two strings σ and τ can be concatenated to form a longer string ρ = στ ,

consisting of the symbols of σ followed by the symbols of τ . We say that σ

is an initial segment or prefix of ρ and that ρ extends σ with extension

τ . If ρ extends σ, then we also write σ 4 ρ and if moreover σ 6= ρ then we

write σ ≺ ρ. This gives a partial order on the set of all strings. Two strings

are called comparable if one extends the other, otherwise they are incom-

parable. A set of pairwise incomparable strings is called an antichain or

a prefix-free set of strings. With σn we denote the concatenation of n

copies of the string σ. For example, 0n is the string consisting of n zeroes.

The term sequence will be used for infinite sequences of symbols, again

usually 0 and 1. Hence, a sequence can be seen as function N → {0, 1}. A

sequence Z extends a string σ, written σ ≺ Z, if σ is an initial segment of

Z. The set of all sequences that extend some string σ is written as JσK. Also,

if X is a set of strings, then we write JXK = ∪σ∈XJσK.

If (σi) is a sequence of strings such that σj extends σi whenever j ≥ i,

and limi→∞ |σi| = ∞, then we define limi→∞ σi to be the sequence Z with

Z(k) = σi(k) for i sufficiently large.

In axiomatic set theory, it is customary to define each natural number

as the set of all smaller natural numbers, that is n = {0, 1, . . . , n− 1}. The

17

symbol ω is also used for the set of all natural numbers. We will use this con-

vention to introduce a concise notation for our purposes. For example, when

no confusion with the integer 2n is possible, 2n will signify {0, 1}{0,1,...,n−1},

i.e. the set of all strings of length n. The set of all infinite sequences is written

as 2ω. The notation 2≤n is used for the set ∪n
i=02

i of all strings of length less

than or equal to n. Likewise 2<ω is used for the set ∪i∈N2i of all strings of

any length. If x is a sequence or a string of length at least n, then x↾n is the

restriction of x to the domain {0, 1, . . . , n− 1}, i.e. is the initial segment of

x of length n. The new sequence that we obtain by removing some initial

segment from a sequence Z, i.e. a sequence of the form Z↾[n,∞), is called a

tail of Z.

2.2 Cantor space and measure theory

The set of all sequences 2ω is known as Cantor space.

A fundamental lemma that applies to Cantor space is König’s lemma

[28]. This lemma says that for any infinite, downwards-closed (i.e. closed

under taking prefixes) set of strings X, there is a sequence Z ∈ 2ω such that

every initial segment of Z is in X. Though in its general form König’s lemma

famously depends on the Axiom of Choice, this is not the case when we are

just considering Cantor space.

Cantor space has a well-studied standard topology. The basic open

sets or open cylinders are of the form JσK for all strings σ. For more

background on topology, see for example [47].

Cantor space also has a well-studied standard measure. On this topic,

a more detailed introduction is appropriate. A measure on a set X assigns

a nonnegative real number (or possibly infinity) to certain subsets of X,

18

representing their size. A measure µ must satisfy µ(∅) = 0 and must be

countably additive, that is

µ

(
⊔

i∈N

Ai

)
=
∑

i∈N

µ(Ai)

for pairwise disjoint sets Ai on which the measure is defined. It might not

be possible to assign a measure in a suitable way to every subset of X.

Therefore, a measure is only defined on a certain σ-algebra Σ of subsets of

X. (This means that Σ must contain X itself, and be closed under countable

unions and complementation.) We will be interested in measures on Cantor

space that are defined on the σ-algebra of Borel sets. A set is Borel if it can

be obtained from open cylinders by taking complements, countable unions

and countable intersections. This will include in particular all Σ0
n and Π0

n

classes, as defined in the next section.

By the extension theorems of measure theory, a measure for all Borel sets

can be defined by assigning a measure to every open cylinder in a countably

additive way. In fact, since every open cylinder is compact, we only need

to worry about finite additivity. Since we will need this result further on, I

prove it here as a lemma.

Lemma 2.2.1.

Suppose m : 2<ω → R≥0 satisfies

m(σ) = m(σ0) +m(σ1) (2)

for every string σ. Then there is a unique measure µ on the Borel sets

such that µ(JσK) = m(σ) for all σ.

Proof. Let A be the class of all finite unions of pairwise disjoint open cylinders

19

(including ∅ as the empty union). As A contains ∅ and is closed under

complements, finite intersections and finite unions, A is called an algebra

of sets. We first prove that there exists a unique function µ0 : A → R≥0

(called a pre-measure) that is countably additive and satisfies µ0(∅) = 0 and

µ0(JσK) = m(σ) for all strings σ.

When U =
⊔n

i=0JσiK is a disjoint union of open cylinders, then we certainly

must have

µ0(U) =
n∑

i=0

m(σi).

So it remains to prove that this µ0 is indeed a well-defined and countably

additive function. Suppose U can also be written as another disjoint union

of open cylinders
⊔m

i=0JτiK. Let N be the maximal length of any σi or τi.

Using (2) we have

n∑

i=0

m(σi) =
∑

σ∈2N

JσK⊆U

m(σ) =
m∑

i=0

m(τi),

so µ0 is indeed well-defined. For countable additivity, suppose that

U,U0, U1, . . . ∈ A

and U =
⊔

i∈N
Ui in a disjoint union. Then all but finitely many Ui must be

the empty set, as U is compact. So we only need to prove finite additivity,

which µ0 satisfies by definition.

Finally, the σ-algebra generated by A is the σ-algebra of Borel sets. So

by the extension theorem from measure theory (often called either Hahn-

Kolmogorov theorem or Carathéodory’s extension theorem; see for example

[22, Section 13, Theorem A]) there is a unique measure µ on the Borel sets

such that µ(U) = µ0(U) for all U ∈ A. So this is also the unique measure on

20

the Borel sets that satisfies µ(JσK) = m(σ) for every string σ, as required.

From now on, µ will always refer to the standard measure that satisfies

µ(JσK) = 2−|σ| for every σ.

Cantor space and the unit interval [0, 1] of the real line are similar in

many ways. The function 2ω → [0, 1] that maps a sequence Z to the real

number with binary expansion 0.Z is a continuous and measure preserving

surjection. Moreover, only the dyadic rationals have two different binary

expansions. If x ∈ [0, 1], then by x↾n we denote the string that contains the

first n digits of the binary expansion of x (taking by convention an expansion

with infinitely many zeroes if we have the choice). So, for example, we have

x = lim
n→∞

0.(x↾n)

for x ∈ [0, 1].

2.3 Computability theory

I will assume that the reader is familiar with the basics of computability

theory, including oracle computations, Turing degrees and the arithmetical

hierarchy. This section merely serves to fix the notation that will be used in

this thesis, and to mention some important results that will be used further

on. A complete introduction to computability theory can be found in [15].

A computable order is a (total) computable function h : N → N that

is nondecreasing and with limn→∞ h(n) = ∞. Often, to obtain the notion of

a computable rate of convergence, we will divide by a computable order. In

that case, we will implicitly assume that the order is nowhere equal to 0.

We fix an effective enumeration φ0, φ1, φ2, . . . of all partial computable

21

functions (possibly and indeed necessarily with repetitions). We write φ(x)↑
if the function φ is undefined on input x, and φ(x)↓ if φ is defined on input x.

Equality will be used to mean that either both sides are undefined, or both

sides are defined and have the same value. We also use the shorthand notation

φ(x) ↓= y to mean that φ(x) ↓ and φ(x) = y. We use [s] to indicate that

all computations are only approximated up to a certain stage s, e.g. φ(x)[s]

might be undefined if the computation for φ(x) = y takes more than s steps.

An important lemma is the Fixed Point Theorem.

Lemma 2.3.1 (Fixed Point Theorem).

For every computable function f : N → N there exists an n ∈ N such

that φf(n) = φn.

A proof can be found in [15, 4.4.1]. Note that the Fixed Point Theorem

implies, by e.g. taking f(n) = n + 1, that the enumeration (φi) must have

repetitions, as mentioned before.

By letting Wi = range(φi) for all i ∈ N we get an effective enumeration

(Wi) of all computable enumerable (c.e.) sets.

In some contexts, especially when defining Kolmogorov complexity, it

is customary to speak about (Turing) machines rather than about partial

computable functions. These machines simply execute a fixed algorithm

using a given input and possibly producing an output. Hence machines and

computable functions are essentially the same concept. Two machines M and

N are called equivalent (M ≡ N) if they compute the same partial function.

There exists a computable bijection 〈·, ·〉 : N×N → N that encodes every

pair of natural numbers m,n as a single natural number 〈m,n〉. For example

〈m,n〉 = 2m(2n + 1) − 1 defines such a pairing function. We fix some

pairing function 〈·, ·〉 from now on. This also gives us computable encoding

22

for n-tuples for n ≥ 2, by defining inductively

〈n0, . . . , nk, nk+1〉 = 〈〈n0, . . . , nk〉, nk+1〉.

The preorder ≤T of Turing reducibility induces an equivalence relation ≡T

on all the subsets of N. The equivalence classes are called Turing degrees.

There is a minimal Turing degree 0 that contains exactly all computable sets.

The Turing degree of the halting problem is denoted by 0′ (pronounced zero

prime or zero jump). The nth jump of the zero degree is denoted by

0(n). These satisfy

0 <T 0′ <T 0(2) <T 0(3) <T

From this, the Turing degrees might appear to be a simple linear order, but

in fact, it is a very complicated non-linear structure. There are many Turing

degrees in between 0 and 0′.

A weak truth table reduction is a Turing reduction with computably

bounded use. Hence weak truth table reducibility (≤wtt) is a stronger reduc-

tion than Turing reducibility. It induces wtt-degrees that are subsets of the

Turing degrees.

The c.e. subsets of N are also called the Σ0
1 sets. They are exactly the

sets of the form

{n ∈ N : ∃mφ(m,n)}

where φ is a computable predicate, i.e. a total computable function that

outputs either 0 for false or 1 for true. In other words, Σ0
1 sets can be defined

by an existential formula or Σ0
1 formula. The Π0

1 sets are the complements of

the Σ0
1 sets. These can be defined by a Π0

1 formula that has just a universal

23

quantifier in front of a computable predicate. In general, a set is Σ0
n or Π0

n is

it is definable using a formula with n alternating quantifiers, the first of which

is an ∃ or a ∀ respectively, followed by a computable predicate. Equivalently,

Σ0
n+1/Π0

n+1 sets are the Σ0
1/Π0

1 sets relative to 0(n), i.e. the predicate in the

defining formula is allowed to be 0(n)-computable. This hierarchy of sets is

called the arithmetical hierarchy. It can equally be applied to sets of

strings, rational numbers, and so on.

A similar hierarchy can be defined for subsets of Cantor space. A Σ0
1

class is a subset of 2ω of the form

{Z ∈ 2ω : ∃mφ(Z↾m)},

where φ is again a computable predicate. The Σ0
1 classes are also called the

effectively open subsets of Cantor space, and indeed they are open in the

topology of Cantor space. A class A ⊆ 2ω is Σ0
1 if and only if there is a

c.e. set of strings X such that A = JXK. We say that A is generated by X

and that X is a set of generators for A.

Complements of Σ0
1 classes are Π0

1 classes, also called effectively closed

subsets of Cantor space. More generally, a Σ0
n class is a set of the form

{Z ∈ 2ω : ∃m1∀m2 . . . φ(Z↾m1
, Z↾m2

, . . . , Z↾mn
)},

where there are n alternating quantifiers and φ is a computable predicate. A

Π0
n class is defined similarly but with a ∀-quantifier in front. It is important

to note that, in contrast to Σ0
1 and Π0

1 sets, not every Σ0
n+1 class is a Σ0

1

class relative to 0(n). Indeed, every Σ0
1 class (relative to whatever oracle) is

24

topologically open, but for example the Σ0
2 class

{Z ∈ 2ω : ∃m1∀m2 (Z↾m2
= 0m2)}

is not. The difference is that every Σ0
1 class relative to 0(n) is of the form

{Z ∈ 2ω : ∃m1∀m2 . . . φ(Z↾m1
, m2, . . . , mn)},

where only the first quantifier is allowed to apply to the length of the initial

segment that is considered. (See [16, p. 76], though note that they state the

implication the wrong way around.)

A special class of Turing degrees that will appear on several occasions

in this thesis are the PA degrees, i.e. the degrees that contain a complete

extension of Peano Arithmetic (see [48, p.156] or [16, Section 2.2.1]). Being a

PA degree is a highness property, i.e. a PA degree either computes the halting

problem or it is in some sense close to computing the halting problem. A PA

degree can compute a member of any nonempty Π0
1 class. Also, the class of

complete extensions of Peano arithmetic is itself a Π0
1 class.

An index for a partial computable function φ is a code for an algorithm

that computes φ, i.e. a number e such that φ = φe. An index for a Σ0
n/Π0

n set

or class is an index for the computable predicate that defines it. An index

for a finite set is a number that encodes the finite string that lists all the

elements of the set. Hence from an index for a finite set, we can compute

its cardinality, which would not be the case if we would define an index for

a finite set to be an index for its characteristic function.

An infinite binary sequence is computable if it is computable as a function

N → {0, 1}. Computability for real numbers can be approached in two

different ways. Either a real number x is computable if its binary expansion

25

is computable as a binary sequence. (Note that if x has two different binary

expansions, then one only has finitely many zeroes and the other has only

finitely many ones, so both are computable.) Other bases than 2 can be used

with equivalent result as well. A second equivalent approach is to say that

a real number x is computable if for every n we can compute (uniformly in

n) a rational number qn (given by its numerator and denominator, i.e. as a

pair of natural numbers) with |qn − x| < 2−n. If we do computations with

computable real numbers, than we really do computations with an index

of an approximation (qn). Consequently, the relation < on computable real

numbers is c.e., but not computable. Indeed, two approximations can appear

to converge to the same real number, but we can never be certain that they

won’t diverge at a later stage.

2.4 Kolmogorov complexity

Kolmogorov complexity was introduced in the mid-1960s, independently by

Ray Solomonoff [56, 57] and Andrey Kolmogorov [26]. That we use the name

Kolmogorov complexity, and not Solomonoff complexity, could be due to the

fact that Solomonoff only used it as an auxiliary concept in the study of a

priory probability, whereas Kolmogorov investigated the complexity for its

own sake [33, section 1.6].

Kolmogorov complexity formalizes the following idea. It’s very easy to

give a relatively short description of the string 0106
, i.e.

0000 . . . 00︸ ︷︷ ︸
106 zeroes

.

It is simply “the string consisting of one million zeroes”. On the other hand,

26

when we toss a fair coin 106 times, writing “0” for heads and “1” for tails,

then we generate a string of length 106 for which we probably don’t have any

short description. There is probably no regularity in the digits of the string,

so we can’t give any shorter description than laboriously listing every single

digit of the string. This description isn’t any shorter than the string itself,

so we can say that the string is quite complex.

The Kolmogorov complexity of strings will bring us a first taste of ran-

domness. Strings with a pattern in their digits tend to have a low complex-

ity (i.e. significantly less than the length of the string). On the other hand,

strings with a high complexity (i.e. close to the length of the string) will

appear random. However, the actual values of Kolmogorov complexity are

somewhat arbitrary, as they depend on a choice of universal machine. By

picking a suitable universal machine, we can give a fixed string any complex-

ity we want. Therefore it doesn’t make much sense to talk about randomness

of individual strings in this way. However, studying how Kolmogorov com-

plexity behaves in the limit as we go from strings to sequences will lead to

robust notions of randomness for infinite sequences. Studying the complexity

of initial segments of random sequences will also expose differences between

different notions of randomness. Finally, the simple formalization of Kol-

mogorov complexity into axiomatic systems such as Peano Arithmetic, will

make it an indispensable tool to investigate interactions between randomness

and proof theory in Chapter 5. As Kolmogorov complexity is an essential

concept throughout this thesis, I will state and proof the basic results in this

section in considerable detail.

27

Plain complexity

Descriptions in English, such as “the string consisting of one million zeroes”

in the above example, can be ambiguous and can give rise to paradoxes such

as the Berry paradox (“The smallest positive integer not definable in under

eleven words.”). For this reason, we use binary strings as descriptions, and we

fix a machine M to decode these descriptions. That is: a string τ describes

the output M(τ), if this computation halts. The M-complexity of a string σ

is the length of the shortest description τ that produces σ when given to M .

Definition.

The M-complexity of a string σ is defined as

CM(σ) = min {|τ | : M(τ) = σ} ,

where we let the minimum be ∞ if the set is empty.

Of course, different machines decode descriptions differently, and there-

fore they have different complexity functions. However, there are certain

optimal or universal machines, whose complexities are lower than the com-

plexities of than any other machine, up to an additive constant.

Definition.

A machine V is universal if for every machine M there is a constant

cM ∈ N such that

CV(σ) ≤ CM(σ) + cM

for every σ ∈ 2<ω.

28

A universal machine can be constructed as follows: let

V(00 . . .0︸ ︷︷ ︸
e zeroes

1τ) = φe(τ)

and V is undefined on any inputs that don’t contain any ones. If a string σ

has a φe-description τ of length n, then 00 . . . 0︸ ︷︷ ︸
e zeroes

1τ is a V-description of σ of

length n+ e+1. Therefore V is universal with cφe
= e+ 1. The constant cM

provides room to include the program of M into the V-descriptions. Because

of this, cM is called the coding constant of M .

Definition.

Fix a universal machine V. The plain complexity C(σ) of a string σ

is CV(σ).

Immediately from the definition of universal machine, it follows that the

difference between the complexities for two different universal machines is

bounded. For most of our results about Kolmogorov complexity, it will not

matter which universal machine is used. If it does matter (particularly in

Chapter 5), we will explicitly investigate the issue.

We can approximate C by the time-bounded complexity Cs, for which

descriptions must be decoded in at most s steps in order to be considered.

Definition.

Let s ≥ 0. The time-bounded complexity Cs is defined as

Cs(σ) = min {|τ | : V(τ)[s] = σ} ,

where again the minimum is equal to ∞ if the set is empty.

The functions Cs are uniformly computable upper bounds for C. More-

29

over, for every string σ, (Cs(σ))s∈N
is a decreasing sequence in N∪{∞} that

eventually assumes the constant value C(σ). We say that C is computably

approximated from above by the functions Cs.

The complexity function C satisfies the counting condition

#{x : C(x) < k} < 2k (3)

for every k ∈ N. This is immediate from the fact that there are only 2k − 1

strings of length less than k, so there exist only 2k − 1 possible descriptions

of length less than k.

In fact, C(σ) ≤ D(σ) + O(1) for every function D that is computably

approximable from above and satisfies the counting condition (3). This can

be used to give a machine-independent definition of C, up to an additive con-

stant [48, 2.1.16]. (The inequality above uses the big O notation. Essentially

O(1) can be read as “an additive constant”. See for example [16, p.3–4] for

more explanations.)

The counting condition (3) implies that for every natural number n, there

is at least one string of length n with complexity at least n. Such a string is

called incompressible. The complexity of a string cannot get significantly

bigger than its own length. Indeed, for the machine Id that implements the

identity function, every string is a description of itself. Hence

CId(σ) = |σ|

and

C(σ) ≤ |σ| +O(1) (4)

for all strings σ.

30

We can also define the complexity of a natural number to be the com-

plexity of its binary form. Then (4) becomes

C(n) ≤ log(n) +O(1).

Complexity of initial segments of a sequence

We now investigate the complexity of initial segments of a sequence. For a

computable sequence Z, we expect that the initial segments have a relatively

low complexity. Indeed, if Z is computable, then there is a machine that maps

every natural number n to the initial segments Z↾n of length n. Therefore

C(Z↾n) ≤ C(n) +O(1) ≤ log(n) +O(1). (5)

We would like to apply the notion of complexity for strings to define

randomness of infinite sequences. A definition for randomness might be that

a sequence is random if all initial segments have high complexity, i.e. a

complexity close to their length. However, it turns out that all sequences

have complexity dips for C:

Theorem 2.4.1 (Martin-Löf, see also [16, 3.1.4] and [48, 2.2.1]).

For every sequence Z, the difference

n− C(Z↾n)

is unbounded.

For the proof of this theorem, we consider a computable bijection be-

tween strings and natural numbers. We then say that any string encodes the

corresponding number. For example, we could let σ encode n− 1 where n is

the number with binary form 1σ.

31

Proof. Consider the machine M that maps any string σ to the binary encod-

ing of |σ| concatenated with σ itself. For any i ∈ N, let mi be the number

with binary encoding Z↾i. Then

M(Z↾[i,mi+i)) = Z↾mi+i,

where Z↾[i,mi+i) is the substring of Z with lengthmi and starting at position i.

So

C(Z↾mi+i) ≤ mi +O(1),

and

mi + i− C(Z↾mi+i) ≥ i− O(1).

Therefore, n− C(Z↾n) is unbounded, as required.

There are still sequences Z for which

lim inf (n− C(Z↾n)) <∞,

that is, there exists a c ∈ N such that

C(Z↾n) ≥ n− c

for infinitely many n. In Chapter 3, these sequences will be called the 2-

random sequences. However, in defining randomness, it will be more fruitful

to consider a slightly different notion of complexity, for which most sequences

don’t have these complexity dips : prefix-free complexity.

Prefix-free complexity

Prefix-free complexity arises when we only allow a limited class of machines

to decode descriptions: we only allow machines with a prefix-free domain.

32

That is: if M is a prefix-free machine and σ is an initial segment of τ ,

then we cannot have both M(σ)↓ and M(τ)↓.
We can use an effective enumeration of all Turing machines to get an

effective enumeration of all prefix-free machines. Any program is executed

as usual, but when on input σ the instruction to halt comes, the prefix-free

machine only actually halts if the program hasn’t already halted at an earlier

stage on any initial segment of σ or on any string that extends σ. (We use

the convention that computations with an input of length s never halt before

stage s, so this procedure is computable.)

This enumeration gives us the ability to build a universal prefix-free ma-

chine.

Definition.

A prefix-free machine U is universal (for prefix-free machines) if for

every prefix-free machine M there is a constant cM such that

CU(σ) ≤ CM(σ) + cM

for every string σ ∈ 2<ω.

We can construct a universal prefix-free machine U in an identical way

to our construction of V: let

U(00 . . . 0︸ ︷︷ ︸
e zeroes

1τ) = Me(τ)

where Me is the e’th prefix-free machine. Then it is immediate that U is

prefix-free itself, and universal as well.

For prefix-free complexity, the letter K is usually used instead of C. In

particular, we define prefix-free complexity as follows:

33

Definition.

Fix a universal prefix-free machine U. The prefix-free complexity

K(σ) of a string σ is CU(σ).

Again, for most of our results, it will not matter which universal machine

is used. If it does matter, we will explicitly investigate the issue.

Just like plain complexity, prefix-free complexity is computably approx-

imable from above by the time-bounded complexity functions Ks.

The counting condition for C is replaced by the weight condition for

K:
∑

σ∈2<ω

2−K(σ) ≤ 1. (6)

This follows immediately from the fact that the open cylinders JτK, for τ in

the domain of a prefix-free function, are disjoint, so their measures in Cantor

space cannot add up to more than 1.

In fact, K(σ) ≤ D(σ) + O(1) for every function D that is computably

approximable from above and satisfies the weight condition (6). This can

be used to give a machine-independent definition of K, up to an additive

constant [48, 2.2.19].

The identity function is not prefix-free, so the inequality

C(σ) ≤ |σ| +O(1)

does not hold for K. Strings of different lengths can be prefixes of each

other, but their descriptions for prefix-free complexity are not allowed to be

prefixes of each other. So we can try to describe all strings by prepending

the digits of any string with a prefix-free description of its length. Indeed,

the machine M that on input σ tries to decompose σ = ρτ , with U(ρ)↓= |τ |,

34

and if successful outputs τ , is prefix-free and decodes these descriptions. So

we have

K(σ) ≤ K(|σ|) + |σ| +O(1). (7)

Now, if the number n has binary form α0α1 . . . αn−1αn, then

0α00α1 . . . 0αn−11αn (8)

is a prefix-free description of it (in the sense that these descriptions for all

natural numbers can be decoded by a prefix-free machine). Since a number

n has a binary form of length approximately log n, we have

K(n) ≤ 2 log(n) +O(1). (9)

Putting (7) and (9) together, we get

K(σ) ≤ |σ| + 2 log(|σ|) +O(1).

By putting more digits of the binary form in between the zeroes in (8),

we can even obtain that for every ǫ > 0

K(n) ≤ (1 + ǫ) log(n) +O(1).

But we cannot replace the constant by 1, as

∞∑

n=0

2− log(n) =
∞∑

n=0

1

n
= ∞,

so this would violate the weight condition (6).

35

Weak truth table completeness of Kolmogorov complex-

ity

Given a string σ, at any stage s, we don’t know if the approximation Cs(σ)

is correct, or if some shorter description of σ will appear at a later stage. It

seems that we need the halting problem to compute the complexity function.

This is indeed the case. Kolmogorov complexity, in both its plain and its

prefix-free forms, is Turing complete, and even weak truth table complete.

Theorem 2.4.2 (See also [48, 2.1.28]).

The functions C and K are wtt-complete.

Proof. We give a proof for C. The proof for K is a straight-forward adapta-

tion of it.

Let n ∈ N be given. Let σn be the lexicographically first string of length

n with C(σn) ≥ n. Let sn be the first stage at which Csn(σ) = C(σ) for all

strings σ of length n. Given n and any s ≥ sn, we can compute σn as the

lexicographically first string σ of length n with Cs(σ) ≥ n.

Note that we can concatenate prefix-free descriptions of n and plain de-

scriptions of s to get plain descriptions of the pairs 〈n, s〉. So

C(σn) ≤ K(n) + C(s) +O(1),

and hence

C(s) ≥ C(σn) −K(n) −O(1)

≥ n−O(logn) (10)

for all s ≥ sn.

36

If a program halts, then the program itself is a description of the number

of steps it takes to halt. So if a program of length m halts in exactly s steps,

then

C(s) ≤ m+O(1). (11)

For n large enough, (10) and (11) give s ≤ sn. How large n needs to be

can be computed from m. Moreover, the value of sn can be obtained with

bounded use of the oracle for C. Subsequently, we know that a program of

length m halts in at most sn steps, or doesn’t halt at all. Hence the halting

problem is wtt-reducible to C, as required.

Even stronger than Theorem 2.4.2, Kummer [30] proved that the set of

incompressible strings

{σ : C(σ) ≥ |σ|}

is truth table complete (tt-complete).

Conditional Kolmogorov complexity

Intuitively, the conditional complexity of σ given τ is the length of the short-

est description of σ, where we can use the value of τ for free as auxiliary

information when decoding the description.

More formally, we have the following definitions, in which we consider

machines that take a pair of strings as input.

Definition.

For any machine M we define the M-complexity of σ given τ as

CM(σ|τ) = min {|ρ| : M(ρ, τ) = σ}

where we let the minimum be ∞ if the set is empty.

37

A machine V2 is universal if for every machine M there is a con-

stant cM ∈ N such that

CV2(σ|τ) ≤ CM(σ|τ) + cM

for all strings σ, τ .

A universal machine V2 can be constructed in a similar way to the univer-

sal machines for (unconditional) Kolmogorov complexity that we constructed

before.

Definition.

Fix a universal machine V2. The plain conditional complexity

C(σ|τ) of a string σ given τ is CV2(σ|τ).

Like before, there is a also a prefix-free version of conditional complexity,

where we only consider machines N such that

M(·, τ) : σ 7→M(σ, τ)

is a function with a prefix-free domain for every string τ . The prefix-free

conditional complexity of σ given τ is written as K(σ|τ).

38

39

Chapter 3

Notions of randomness

In this chapter we will look at the different possible answers to the question

that we posed in the introduction: how to define randomness for individual

infinite binary sequences. In Section 3.1 we look at the earliest attempts

at a solution, initiated by Von Mises around 1919. His notion is nowadays

called stochasticity. In Section 3.2, we encounter the first modern random-

ness notion, namely Martin-Löf randomness. Variations on the idea of a

Martin-Löf test also lead to other notions such as Schnorr randomness and

2-randomness. In Section 3.3 we will see that an equivalent definition of

Martin-Löf randomness can be obtained by considering the Kolmogorov com-

plexity of initial segments of a sequence. In Section 3.4 we study a third ap-

proach to defining randomness, involving betting strategies and martingales.

Again, Martin-Löf randomness can be defined in this way, but moreover a

number of new interesting notions appear, namely computable randomness

and its variations.

The three different points of view in Sections 3.2–3.4 (typicality, incom-

pressibility and unpredictability) are traditionally called the three paradigms

for defining randomness. More recently however, some completely new ap-

40

proaches to randomness have been uncovered. In Section 3.5 we discuss the

relations between randomness notions and differentiability of computable real

functions. This also leads to some interesting remarks on base-invariance of

computable randomness. In Section 3.6 we briefly look at some interactions

between Martin-Löf randomness and ergodic theory. Finally, in Section 3.7

we revisit the notion of stochasticity and investigate how it relates to the

randomness notions that are defined in this chapter.

There are still a lot of other randomness notions that are not mentioned

in this chapter. Moreover, I completely ignore major topics such as defining

randomness relative to non-standard measures of Cantor space (see e.g. [51]).

A full treatment requires the space of an entire book. Hence I can only refer

to the excellent monographs of Nies [48] and Downey and Hirschfeldt [16] for

more information.

3.1 Stochasticity

The first attempt at defining randomness for infinite sequences goes back

to 1919. Richard von Mises [61], while trying to build rigorous foundations

for probability theory, defined the notion of a Kollektiv. Nowadays we use

use the name stochastic sequence instead of Kollektiv. Von Mises tried to

characterize random sequences by looking at the law of large numbers: the

frequency of zeroes and the frequency of ones must approach 1
2

in a random

sequence. This in itself is not enough: the very regular sequence

010101010101 . . .

also satisfies the law of large numbers. However, it is easy to select a subse-

quence of this sequence that does not satisfy the law of large numbers, for

41

example by taking all digits with an odd position in the sequence. Hence,

a sequence is stochastic if every subsequence that we can select satisfies the

law of large numbers. However, Von Mises could not make this idea of a

selectable subsequence into a rigorous mathematical notion.

Around 1936, Wald [62] made significant efforts to turn stochasticity into

a notion free from contradictions. He explicitly stated the need for a re-

striction to some countable collection of selection rules, and suggested that

they should be “computable in a finite number of steps”1. In 1940, Alonzo

Church [14] made this exact using the recently formalized notion of com-

putable function: “Thus a Spielsystem [selection rule] should be represented

mathematically, not as a function, or even as a definition of a function, but

as an effective algorithm for the calculation of the values of a function.” This

finally gives us the definitions of stochasticity that we will use below.

Even so, stochasticity has not been accepted as a genuine randomness

notion. The most well-known objection is Ville’s Theorem, which is stated

below as Theorem 3.1.2. With regards to the foundations of probability

theory, Kolmogorov’s axioms became generally favoured over Von Mises’ ap-

proach. (For more historical details, see e.g. Van Lambalgen’s thesis [32].)

Nonetheless, stochasticity is still an interesting notion in itself.

Stochastic sequences

Definition.

A selection rule is a function s : 2<ω → {yes,no}. Given a string or

infinite sequence x, the set of selected positions in x is

poss(x) = {i ∈ dom(x) : s(x↾i) = yes}.
1In German: “in endlich vielen Schritten berechnet”

42

If poss(x) is finite, say poss(x) = {i1, i2, . . . , in} with i1 < i2 < . . . <

in, then s selects the substring

s[x] = x(i1)x(i2) . . . x(in)

from Z.

If poss(x) is infinite, then s selects a subsequence s[x] from x in a

similar way, such that

s[x] = lim
n→∞

s[x↾n].

We also consider partial selection rules (selection rules that are par-

tial functions). As soon as the selection rule is undefined on some initial

segment of a string or sequence x, the set of selected positions in x, and

the selected substring or subsequence of x become undefined.

Definition.

For any string σ, let zeroes(σ) be the number of zeroes in σ, i.e.

zeroes(σ) = |{i ∈ dom(σ) : σ(i) = 0}|.

An infinite sequence Z satisfies the law of large numbers if

lim
n→∞

(
zeroes(Z↾n)

n

)
=

1

2
.

Definition.

A sequence Z is Mises-Wald-Church stochastic if s[Z] satisfies the

law of large numbers for all partial computable selection rules s such that

s[Z] is defined and infinite.

43

A sequence Z is Church stochastic if s[Z] satisfies the law of large

numbers for all (total) computable selection rules s such that s[Z] is

infinite.

A sequence Z is weakly Church stochastic if s[Z] satisfies the

law of large numbers for all computable selection rules s such that s[Y]

is infinite for all sequences Y .

The notions of Mises-Wald-Church stochasticity and Church stochasticity

are well studied. The notion of weak Church stochasticity is new as far as

I’m aware. I will argue that it is an interesting notion, by proving in Section

3.7 that it is implied by Schnorr randomness, whereas Church stochasticity

is not.

Remark 3.1.1. In defining a selection rule, it is necessary to be able to

select differently depending on the values of the preceding digits. Indeed,

suppose we don’t allow this. That is, suppose we work with restricted selection

rules that are functions s : N → {yes,no}, and we just select digits in

positions i such that s(i) = yes. Let’s call a sequence blindly stochastic if

every subsequence selected by such a restricted selection rule satisfies the law

of large numbers. We claim that this approach fails, because it leaves us with

some blindly stochastic sequences that follow a glaringly obvious pattern.

Indeed, let Z be any blindly stochastic sequence, and let Z be the sequence

obtained from Z by taking two copies of every digit. For example, if

Z = 0 1 1 0 1 1 0 0 1 0 1 . . .

then

Z = 00 11 11 00 11 11 00 00 11 00 11

We claim that Z will also be blindly stochastic, in spite of the very obvious

44

pattern that every digit is repeated.

Suppose for contradiction that Z is not blindly stochastic. Then we have a

computable selection rule s : N → {yes,no} that selects a subsequence from

Z that does not satisfy the law of large numbers. We need to define a com-

putable selection rule s that selects a subsequence from the original sequence

Z that doesn’t satisfy the law of large numbers. Let s0 be the computable

selection rule that selects just the even positions that s selects. Let s1 be the

computable selection rule that selects just the odd positions that s selects.

We claim that at least one of these two selection rules must also select

a subsequence of Z that does not satisfy the law of large numbers. Indeed,

if either s0 or s1 selects only finitely many positions, then the other trivially

selects a subsequence that still does not satisfy the law of large numbers. So

suppose for contradiction that both s0 and s1 select an infinite subsequence

from Z that does satisfy the law of large numbers. Let ǫ > 0. Abbreviate

σn
i = si

[
Z↾n

]
and take N large enough such that

∣∣∣∣
zeroes(σn

i)

|σn
i |

− 1

2

∣∣∣∣ < ǫ

for i ∈ {0, 1} and for all n > N . Given n > N , we then have

∣∣∣∣
zeroes(s[Z↾n])

|s[Z↾n]|
− 1

2

∣∣∣∣

=

∣∣∣∣
zeroes(σn

0) + zeroes(σn
1)

|σn
0 | + |σn

1 |
− 1

2

∣∣∣∣

=

∣∣∣∣
|σn

0 |
|σn

0 | + |σn
1 |

(
zeroes(σn

0)

|σn
0 |

− 1

2

)
+

|σn
1 |

|σn
0 | + |σn

1 |

(
zeroes(σn

1)

|σn
1 |

− 1

2

)∣∣∣∣

<
|σn

0 |
|σn

0 | + |σn
1 |
ǫ+

|σn
1 |

|σn
0 | + |σn

1 |
ǫ

= ǫ,

45

contradicting that s selected a subsequence from Z not satisfying the law of

large numbers.

Suppose without loss of generality that s0 selects a subsequence that does

not satisfy the law of large numbers. Define s′(i) = s0(2i). Then s′ selects

exactly the same subsequence from Z that s0 selects from Z. Hence, Z is not

blindly stochastic, in contradiction with our assumptions.

Ville’s Theorem

The most important objection against stochasticity being a proper random-

ness notion, was given in 1939 by Jean Ville. He proved that just looking

at the law of large numbers for certain subsequences, always fails to capture

certain regularities. This cannot be solved by considering a larger class than

just (partial) computable selection rules. Indeed, Ville’s result applies to any

countable collection of selection rules.

Theorem 3.1.2 (Ville’s Theorem [60]).

Let S be a countable collection of selection rules. There exists a sequence

Z such that

• for every s ∈ S such that s[Z] is defined and infinite, s[Z] satisfies

the law of large numbers, and

• the inequality
zeroes(Z↾n)

n
≥ 1

2

holds for every n.

That is, the sequence Z is stochastic with respect to the given collection

of selection rules, but the limit frequency of zeroes is always approached from

above. This is not something we expect from a random sequence.

46

0

1
2

n

1

zeroes(Z↾n)
n

Figure 1: Typical graph of the frequency of zeroes in the initial segments
of a random sequence Z. The frequency oscillates around the limit fre-
quency of 1

2
. Compare with Figure 2.

For a proof of Ville’s theorem, see [34] or [16, 6.5.1].

By showing that certain regularities don’t manifest themselves in a fail-

ure of the law of large numbers for certain subsequences, Ville’s theorem

exposed a fundamental flaw in Von Mises’ approach. It would take several

decades for a suitable alternative approach to defining randomness to arise.

Subsequently, however, soon many different plausible definitions were pro-

posed. Some of these definitions turned out to be equivalent, but others led

to different notions. The definitions mostly took one of three different ap-

proaches, which are discussed in the following three sections. However, these

three paradigms (typicality, incompressibility and unpredictability) are not

exhaustive. Ever more new approaches to randomness are being discovered,

including links with computable analysis and ergodic theory. I’ll also briefly

discuss these.

Ville’s theorem does not mean that stochasticity is a worthless notion.

Stochasticity and its relation to proper randomness notions is still an inter-

esting topic. This is why we will revisit stochasticity in Section 3.7, once we

47

0

1
2

n

1

zeroes(Z↾n)
n

Figure 2: Graph of the frequency of zeroes in the initial segments of a
sequence Z as constructed in Ville’s Theorem. The frequency is always
greater or equal than the eventual limit of 1

2
. Compare with Figure 1.

have defined the relevant randomness notions.

3.2 The typicality paradigm

Ville’s theorem showed that stochasticity is not strong enough to be a real

randomness notion: there are regularities that cannot be discovered by just

considering the convergence of the frequencies of zeroes and ones in a se-

quence, no matter what countable collection of selection rules we use. In the

words of the Swedish mathematician Per Martin-Löf [39]: “Not even such an

intuitively appealing property as the oscillative behavior of the relative fre-

quencies necessarily holds for sequences which are random in [Von Mises’]

sense.”

Martin-Löf himself proposed the first improved approach to defining ran-

domness in 1966. We’ve seen in Chapter 2 that Cantor Space has a well-

studied standard measure, as well as well-studied computability notions for

sets of sequences. Martin-Löf combined these to define the notion of an ef-

48

fective null class : a collection of sequences that satisfy a rare (measure zero),

effective property and are hence to be considered nonrandom. These effective

null classes are stronger than Von Mises’ selection rules. In particular, the

sequences constructed in Ville’s Theorem all lie in an effective null class, and

are hence nonrandom in Martin-Löf’s sense.

Martin-Löf randomness

Martin-Löf’s way to formally define an effective null class was to consider

the intersection of an effective sequence of Σ0
1 classes, with the measure of

the intersection converging to 0 at a computable rate. Such a sequence of Σ0
1

classes is called a Martin-Löf test.

Definition (Martin-Löf [38]).

A Martin-Löf test is a sequence (Ui) of Σ0
1 classes (which we call the

levels of the test), whose indices can be effectively obtained from i, with

µ(Ui) < 2−i. A sequence Z passes the test if Z 6∈ ∩i∈NUi. If on the

other hand Z ∈ ∩i∈NUi, then we say that Z fails the test, or that the

test captures Z. A sequence is Martin-Löf random if it passes every

Martin-Löf test.

Remark 3.2.1. Interestingly, there exists a single universal Martin-

Löf test, such that if a sequence Z passes the universal test, then it passes

every Martin-Löf test. The universal Martin-Löf test (Vi) is constructed

as follows. We can take an effective enumeration of all Martin-Löf tests

(U0
i), (U1

i), (U2
i) . . . and define Vi = ∪j∈NU

j
j+i+1. An effective union of Σ0

1

classes is still a Σ0
1 class and we have

µ(Vi) ≤
∑

j∈N

µ
(
U

j
j+i+1

)
=
∑

j∈N

2−j−i−1 = 2−i,

49

so (Vi) is indeed a Martin-Löf test. Furthermore, if Z ∈ ∩i∈NU
j
i for some j,

then we also have Z ∈ ∩i∈NVi. ([38], see also [16, 6.2.5] or [48, 3.2.4].)

Remark 3.2.2. We can loosen the requirement µ(Ui) < 2−i to µ(Ui) <
1

h(i)

for some fixed computable order h : N → N. In other words: the measures

µ(Ui) should converge to 0 at a computable rate. Indeed, if we have µ(Ui) <

1
h(i)

for all i, then we can effectively take a subsequence (Uni
) of (Ui) that

does satisfy µ(Uni
) < 2−i. Then (Uni

) is a Martin-Löf test in the original

sense which captures every sequence captured by (Ui).

Remark 3.2.3. Another test notion that captures exactly the same class

of sequences is the Solovay test. A Solovay test is a uniformly computable

sequence (Ui) of Σ0
1 classes with

∑
i∈N

µ(Ui) < ∞. A sequence Z passes the

test if Z ∈ Ui for at most finitely many values i. A sequence is Martin-

Löf random if and only if it passes every Solovay test (attributed by [16] to

unpublished work of Solovay; also proven by Shen [55]; see also [16, 6.2.8] or

[48, 3.2.19]).

Martin-Löf randomness is also sometimes called 1-randomness. More

generally, if we work with Σ0
n+1 classes instead of Σ0

1 classes in the defini-

tion of a Martin-Löf test, then we get the notion of (n + 1)-randomness.

Equivalently, we can allow the use of an oracle ∅(n) [25, Lemma II.1.5] [16,

Corollary 6.8.5]. This equivalence is not trivial, since not every Σ0
n+1 class is

also a Σ0,0(n)

1 class.

The notion of n-randomness gets stronger as n grows larger.

Schnorr randomness

In the years after Martin-Löf proposed his definition of randomness, Ger-

man mathematician Claus-Peter Schnorr formulated a number of objections

50

against the notion. One of his main objections was that Martin-Löf tests are

not sufficiently computable. In his 1971 book [53, p.35-36] he wrote: “Let

(Ui) be a Martin-Löf test. Given σ ∈ 2<ω and i ∈ N, the value

2|σ|µ(JUiK ∩ JxK)

expresses that probability that an infinite sequence starting with σ lies in the

effectively open neighbourhood Ui of the effectively null class U = ∩i∈NUi.

This value thus indicates to some extent how much the initial segment σ

conforms with the almost-everywhere property defined by 2ω \ U . If the value

is high, then σ conforms relatively little with the property. In the definition

of Martin-Löf test, however, we did not require in any way that this value has

to be computable. Indeed, as we will see, this is generally, and in particular

for a universal Martin-Löf test, not the case.”2

Schnorr got around this objection by requiring that the measures µ(Ui)

of the levels of a test (Ui) are computable real numbers, uniformly in i. This

gives rise to the notion of Schnorr randomness.

Definition.

A Schnorr test is a uniformly computable sequence (Ui) of Σ0
1 classes

such that µ(Ui) is a computable real number uniformly in i with µ(Ui) <

2Translated from German using a more modern notation. The original quote is as
follows: “Sei Y ⊂ N × X⋆ ein rekursiver Sequentialtest. Zu x ∈ X⋆ und i ∈ N bedeutet
der Wert

2|x|µ([Yi] ∩ [x])

die Wahrscheinlichkeit dafür, daß eine unendliche Folge, die mit x beginnt, in der
r.o. Ungebung [Yi] der rekursiven Nullmenge YY = ∩i∈N [Yi] liegt. Dieser Wert sagt
also etwas darüber aus, inwieweit die Anfangsfolge x den zu YY zugehörige FÜG
[Fastüberallgesetz] entspricht. Ist der Wert hoch, dann entspricht x eben diesem FÜG
in geringem Maße. Nun haben wir aber bei der Definition rekursiver Sequentialtests kein-
erwegs gefordert, daß man diese Werte effektiv berechnen kann. Tatsächlich ist dies, wie
wir noch sehen werden, im allgemeinen und insbesonders für einen universellen rekursiven
Sequentialtest auch nicht der Fall.”

51

2−i. A sequence Z is passes the test if Z 6∈ ∩i∈NUi. A sequence is

Schnorr random if it passes every Schnorr test.

Remark 3.2.4. Just like with Martin-Löf tests, we don’t strictly need

µ(Ui) < 2−i in a Schnorr test, as long as µ(Ui) → 0 at some computably

rate.

Remark 3.2.5. A useful fact for Schnorr tests, is that a sequence Z is

already certainly not Schnorr random when Z ∈ Ui for infinitely many values

of i ∈ N and for some Schnorr test (Ui). Indeed, if this is the case, then we

can define another Schnorr test (Vi) by

Vi =
⋃

j∈N

Ui+j+1

that succeeds on Z in the conventional sense that Z ∈ ∩i∈NVi. (See [48,

3.5.10], or [16, 7.1.10] for a slightly stronger result.)

Kurtz randomness and weak n-randomness

We can pose even stricter requirements on our tests. A Kurtz test is a Martin-

Löf test where the Ui are now uniformly ∆0
1, instead of just Σ0

1. Equivalently,

every Ui is a finite union of basic open sets ∪σ∈Di
JσK, where the indices of

the finite sets Di are uniformly computable in i.

Definition (Kurtz [31] and Wang [63]).

A Kurtz test (Ui) is sequence of ∆0
1 sets, whose indices are uniformly

computable in i, with µ(Ui) < 2−i. A sequence Z passes the test if

Z 6∈ ∩i∈NUi. A sequence that passes every Kurtz test is called Kurtz

random.

52

A Kurtz random sequence can also be defined as a sequence that is con-

tained in no null (measure zero) Π0
1 class.

Kurtz randomness is also called weak 1-randomness, which generalizes

as follows:

Definition.

A sequence Z is weakly n-random if Z 6∈ A for every null Π0
n class.

It should be noted that weak (n+1)-randomness is not the same as weak

1-randomness relativized to the oracle ∅(n). This is because, as we mentioned

in Chapter 2, not every Π0
n+1 class is a Π0

1 class relative to 0(n). (See also

[16, p. 76 and p. 286].)

Weak (n+1)-randomness implies n-randomness. Indeed, null Π0
n+1 classes

are exactly the uniform intersections of sequences of Σ0
n classes with measures

converging to 0. So if we take Σ0
n Martin-Löf tests but don’t require any

computable bound on how quickly the measures of the sets Ui converge to

zero, then we obtain tests for weak (n+ 1)-randomness.

Moreover, justifying the name of weak n-randomness, n-randomness im-

plies weak n-randomness [25, II.5.1].

There are Kurtz random sequences that do not satisfy the law of large

numbers. In particular, this applies to any weakly 1-generic sequence [48,

3.5.3–3.5.5]. One can argue that therefore, Kurtz randomness is really too

weak to be a genuine randomness notion. However, Kurtz randomness (weak

1-randomness) relates to Martin-Löf randomness (1-randomness) just like

weak 2-randomness relates to 2-randomness, and so on. Because the no-

tion fits nicely into the hierarchy of randomness notions, the name Kurtz

randomness still applies.

53

Randomness and Turing completeness

As we will see in the next section, some Martin-Löf random sequences are

Turing complete, for example Chaitin’s Ω. Even stronger: the Kučera-Gács

theorem ([29], [20], see also [16, 8.3.2]) says that there exists a Martin-Löf

random above any given Turing degree. In a sense however, these sequences

are not typical for Martin-Löf randomness. One might even argue that ran-

domness and strong computational power should not go together: how can

a sequence be random, and still be able to compute nontrivial information

like the halting problem?

This issue becomes even more pressing when we observe that there is a

clear dichotomy between the Martin-Löf random sequences that are Turing

complete and those that aren’t. The latter aren’t even close to computing

the halting problem, in the sense that they can’t even have a PA degree ([58],

see also [48, 4.3.5] or [16, 8.8.4]).

Downey and Hirschfeldt [16, footnote 4 p.229] make a cunning analogy

between passing a Martin-Löf test and passing an ignorance test. You can

pass an ignorance test either by being genuinely ignorant, or by being so

smart that you can successfully impersonate an ignorant person. In a sim-

ilar way, Martin-Löf tests are passed by computationally weak as well as

computationally strong sequences.

When we move to stronger notions such as weak 2-randomness and 2-

randomness, then no Turing-complete sequence is random anymore. We can

even define a test notion that gives us a randomness definition which in-

cludes exactly the Martin-Löf randoms that are not Turing complete ([19],

see also [16, 7.7.4]). This notion is called difference randomness, as a test

for difference randomness is the difference of two Martin-Löf tests, in the

sense that every level of the difference test is the set-theoretic difference of

54

the corresponding levels of the respective Martin-Löf tests. Difference ran-

domness is strictly stronger than Martin-Löf randomness but strictly weaker

than weak 2-randomness.

So is difference randomness, or 2-randomness, in some sense a better no-

tion than Martin-Löf randomness? If so, are still stronger notions even more

preferable? Even Per Martin-Löf himself, just a few years after defining the

notion of Martin-Löf randomness, proposed to define randomness instead us-

ing the much stronger hyperarithmetical null classes, rather than Martin-Löf

tests [39].

However, strength is not everything. Martin-Löf randomness has very

useful properties and applications, and many alternative characterizations,

that cannot be found for stronger notions of randomness. In short, Martin-

Löf randomness interacts better with other areas of computability theory

(and even with proof theory, as we will see in chapter 5) than most other

randomness notions. A possible explanation is that the Martin-Löf test has a

good balance between capturing power and simplicity. Consequently, know-

ing that a particular sequence is not random (i.e. that it fails some Martin-

Löf test) is very useful information. Stronger notions have more complicated

tests, which makes it harder to find interesting consequences of the fact that

a given sequence is not random. Can we call a sequence regular (i.e. non-

random) if the pattern that it satisfies is so complex that we can’t do anything

with it?

Whatever your personal view, it is unlikely that there will ever be a single

notion with the status of only sensible randomness notion. To our current

knowledge, Martin-Löf randomness is probably the most robust and well-

behaved of all notions. However, many other notions have their own appeal

55

and interest. Since randomness has so many different faces, studying the

differences between the many notions is essential in the quest to understand

the concept of randomness in general. This is one of the main objectives of

this thesis.

3.3 The incompressibility paradigm

Kolmogorov complexity provides a second approach to defining randomness.

We expect that we cannot give a much shorter description for the first n

digits of a random sequence, than just listing these digits one by one, giving

a description of approximate length n. Hence randomness corresponds to

incompressibility of initial segments. We can only require this up to an

additive constant, if the notion is to be independent of the choice of universal

machine, and also to allow for a finite number of initial segments of a random

sequence to have very low complexity, as long as the sequence as a whole is

random. We also need the correct notion of Kolmogorov complexity. As

we saw in Theorem 2.4.1, there are no sequences Z for which there exists a

constant c such that

C(Z↾n) > n− c (12)

for all n ∈ N. It is still possible to change equation (12) to obtain defi-

nitions of randomness using plain complexity, for example by replacing the

expression on the right hand side with a function that grows more slowly in

n. However, the most elegant definition of randomness using Kolmogorov

complexity is obtained by using prefix-free complexity.

56

Theorem 3.3.1 (Schnorr [54], see also [48, 3.2.9] and [16, 6.2.3]).

A sequence Z is Martin-Löf random if and only if there exists a constant

c such that

K(Z↾n) > n− c (13)

for all n ∈ N.

Proof. First suppose that Z is not Martin-Löf random. Hence there exists a

Martin-Löf test (Ui) such that Z ∈ ∩i∈NUi. Suppose every Ui is generated by

the prefix-free c.e. set Xi. Construct a prefix-free machine M as follows: for

every string σ enumerated in some X2i, provide an M-description of length

|σ| − i + 1. As the measure of U2i is at most 2−2i, the M-descriptions for

the elements of X2i contribute at most weight 2−i+1 to the domain of M . So

the descriptions that we want M to have, do not a priory violate the weight

condition (6). The actual existence of such a machine M is guaranteed by

a result known as the Kraft-Chaitin Theorem, or KC-theorem, or Machine

Existence Theorem ([11], [48, 2.2.17], [16, 3.6.1]). If the machine M has

coding constant d, and Z↾ni
is the initial segment of Z that is enumerated

in X2i, then

K(Z↾ni
) ≤ KM(Z↾ni

) + d ≤ ni − i+ 1 + d

for all i ∈ N. Hence (13) cannot hold for any constant c.

For the other direction, suppose that for every c ∈ N we can find some

initial segment xc of Z such that K(xc) ≤ |xc| − c. Given i, let Xi be

the prefix-free set of minimal (for the order ≺) strings σ with complexity

K(σ) ≤ |σ| − i. These sets Xi are uniformly c.e.. Furthermore, JXiK has

measure at most 2−i, otherwise the weight condition (6) would be violated.

So (JXiK) is a Martin-Löf test, and it succeeds on Z. Therefore Z is not

Martin-Löf random, as required.

57

Another way of putting Theorem 3.3.1 is to say that a sequence Z is

Martin-Löf random if and only if

lim inf
n→∞

(K(Z↾n) − n) > −∞,

i.e. the lengths of initial segments do not grow more quickly than their

complexities. But in fact, if Z is Martin-Löf random, something stronger

holds:

lim
n→∞

(K(Z↾n) − n) = ∞.

Hence, the prefix-free complexities of initial segments never grow at the same

rate as their lengths. Either the complexities grow strictly faster, in which

case the sequence is Martin-Löf random, or the lengths grow strictly faster, in

which case the sequence is not random. This was proven in 1987 by Chaitin

[12] as an application of Solovay tests (see also [48, 3.2.21]). We give a direct

proof of a more recent stronger result, called the Ample Excess Lemma.

Theorem 3.3.2 (Ample Excess Lemma. Miller and Yu [45], see also

[16, 6.6.1]).

A sequence Z is Martin-Löf random if and only if

∑

n∈N

2n−K(Z↾n) <∞.

Proof. First, suppose that Z is not Martin-Löf random. By Theorem 3.3.1,

the difference (n−K(Z↾n)) has no upper bound. Therefore

∑

n∈N

2n−K(Z↾n) = ∞.

58

For the other direction, define

Ui =

{
Y ∈ 2ω :

∑

n∈N

2n−K(Y ↾n) > 2i

}
.

By approximatingK(Y ↾n) from above, we can approximate the terms 2n−K(Y ↾n)

from below. Moreover, all terms are positive, so we can approximate the

whole sum
∑

n∈N
2n−K(Y ↾n) from below. Therefore the Ui’s are Σ0

1 classes

uniformly in i. We claim that µ(Ui) ≤ 2−i, i.e. that (Ui) is a Martin-Löf

test.

Suppose for contradiction that µ(Ui) > 2−i. Then also for some m ∈ N

the measure of {
Y ∈ 2ω :

m∑

n=0

2n−K(Y ↾n) > 2i

}

must be greater than 2−i. (Indeed, Ui is the countable intersection of these

sets, so its measure is the limit of the measures of these sets.) However, for

any m ∈ N we have

∑

σ∈2m

m∑

n=0

2n−K(σ↾n) =
∑

τ∈2≤m

2m−|τ |2|τ |−K(τ)

= 2m
∑

τ∈2≤m

2−K(τ)

≤ 2m,

where the last line is due to the weight condition (6). Therefore, less than a

fraction 2−i of strings σ of length m can satisfy

m∑

n=0

2n−K(σ↾n) > 2i.

This is a contradiction. So we have proven that µ(Ui) ≤ 2−i.

59

As (Ui) is a Martin-Löf test that captures every sequence Z which does

not satisfy
∑

n∈N

2n−K(Z↾n) <∞,

no such sequence is Martin-Löf random, as required.

Corollary 3.3.3.

A sequence Z is Martin-Löf random if and only if

lim
n→∞

(K(Z↾n) − n) = ∞.

Proof. One direction is weaker than Theorem 3.3.1. For the other direc-

tion, suppose that Z is Martin-Löf random. By the Ample Excess Lemma

(Theorem 3.3.2),
∑

n∈N

2n−K(Z↾n) <∞.

This can only happen if

lim
n→∞

(n−K(Z↾n)) = −∞,

as required.

Chaitin’s Ω

For every prefix-free machine M we can consider the measure ΩM of the Σ0
1

class generated by its domain:

ΩM =
∑

σ∈domM

2−|σ|.

60

This is called the halting probability of the machine, since if we take an

infinite sequence Z at random, ΩM is exactly the probability that M halts

on some initial segment of Z.

If M is a universal prefix-free machine, then we denote the halting prob-

ability simply by Ω. Of course, the exact value of Ω depends on the choice of

universal machine, but this will not matter for the properties of Ω that are

relevant to us. The real number Ω is also called Chaitin’s constant, after

Gregory Chatin’s 1975 paper [11].

Ω is a left-c.e. real number, which means that there is a computable

nondecreasing sequence of rational numbers that converges to ΩM . Indeed,

the approximations Ω[s] = ΩU[s] provide exactly such a sequence. However,

Ω is far from being computable.

Theorem 3.3.4 (Calude and Nies [8], see also [16, 6.1.2] or [48, 3.2.30]).

Ω is wtt-complete.

Proof. To compute Ω to an accuracy of 2−n it suffices to ask to oracle for the

halting problem if the approximations Ω[s] ever become greater than k2−n

for all k ∈ {0, 1, . . . , 2n}. Hence Ω ≤wtt 0′.

Conversely, to prove 0′ ≤wtt Ω, consider the prefix-free machine M that

halts on 0n1 with output s if φn(n) halts at stage s. Let c be the coding

constant for M . If φn(n) halts at stage s, then

K(s) ≤ KM(s) + c ≤ n+ 1 + c,

so descriptions of s contribute at least 2−n−1−c to the universal halting prob-

ability Ω. With bounded use of the oracle for Ω we can find all such stages

s, and check if φn(n) halts at any of them. If not, then it must be that

φn(n)↑.

61

Before proving that Ω is Martin-Löf random, we need the following lemma.

Lemma 3.3.5.

For every partial computable function f there exists a constant c such

that if f(σ) is defined, then

K(f(σ)) ≤ K(σ) + c.

Proof. Consider the prefix-free machineM that on input σ computes f(U(σ)),

if this is defined. Let c be the coding constant of M . Suppose that f(σ) is

defined. Every U-description of σ is an M-description of f(σ), so we have

K(f(σ)) ≤ KM(f(σ)) + c ≤ K(σ) + c

as required.

Theorem 3.3.6 (Chaitin [11, Theorem 4.3b], see also [16, 6.1.3] or [48,

3.2.11]).

Ω is Martin-Löf random.

Proof. We claim that there is a constant c such that K(Ω↾n) ≥ n − c for

all n.

Consider the partial function f that on input σ tries to enumerate dom(U)

until its measure is at least 0.σ at some stage s, and if successful outputs

some string f(σ) with Ks(f(σ)) > |σ|. Note that f(Ω↾n) is defined and not

only Ks(f(Ω↾n)) > n, but also K(f(Ω↾n)) > n, since any U-description of

length at most n must appear in dom(U) before µ(dom(U[s])) = Ω[s] reaches

0.Ω↾n. By the lemma above there exists a constant c such that

n < K(f(Ω↾n)) ≤ K(Ω↾n) + c

for every n, as required.

62

Corollary 3.3.7.

There exists a Martin-Löf random that is left-c.e. and Turing complete.

As discussed at the end of Section 3.2, being left-c.e. and computing

the halting problem are properties that we might not expect any random

sequences to have. Indeed, stronger notions such as 2-randomness have no

left-c.e. or Turing-complete random sequences. Hence Ω could be regarded

as a somewhat atypical random number.

3.4 The unpredictability paradigm

The third way to go about defining randomness of infinite sequences comes

from the idea that the digits of a random sequence should be unpredictable.

This idea is somewhat similar to Von Mises’ definition of stochasticity, but

we should allow for more ways to predict patterns in a sequence, rather then

just selecting a subsequence that doesn’t satisfy the law of large numbers.

We do this by using betting strategies. That name is appropriate since a

betting strategy works like a gambler playing roulette in a casino, repeatedly

betting on either red or black numbers. He doesn’t have to tip the dealer and

there is no number zero on the roulette wheel, so he is playing a fair game.

The casino had better make certain that the sequence of reds and blacks that

appears is random. If there is a regularity in the outcomes, the gambler will

be able to come up with a betting strategy that exploits this and makes his

profits grow unboundedly.

Betting on the digits of an infinite sequence works just like this. The

gambler starts with a certain initial capital, and then has the option to wager

a certain fraction of his capital on the first digit of the sequence being a zero,

or on it being a one. If he is correct, then he doubles the money that he

63

has risked. If he is wrong however, he loses the money that he has wagered.

Next, he can place a new bet on the second digit of the sequence with his

new capital, and so on. If his profits grow unboundedly whilst betting on

the sequence, then the gambler has discovered a pattern, and hence it is a

non-random sequence.

This type of gambling game, formalized using the concept of martingales,

was already investigated by Ville in 1939 [60] as a way to provide a definition

of randomness where Ville’s Theorem does not pose an objection. Unfor-

tunately, it appears that Ville was unaware of the recent developments in

computability theory. Therefore, he did not think that there was a canonical

class of martingales that could be used to define random sequences. Ville

concluded: “[. . .] the definition of randomness by martingales is relative; it

supposes a prior choice of properties (of measure zero) to be excluded. If, in

some sense, it solves the question of randomness more completely than the

definition of Wald, it does not succeed in providing an arithmetical model of

a sequence that has all the characteristics of a randomly generated sequence;

this last problem is considered by us to be insolvable, and on this point we

yield to the opinion of many mathematicians, among whom E. Borel, Fréchet

and P. Lévi.”3. It is rather astonishing that Ville was so close to giving the

current definition of computable randomness, but gave up and deemed the

problem unsolvable.

It would take 30 more years before Claus-Peter Schnorr took up Ville’s

idea again. Schnorr provided the missing link by suggesting to consider

3Original text in French: “Mais la condition d’irrégularité par la martingale est relative;
elle suppose un choix préalable des propriétés (de probabilité nulle) à exclure. Si, dans un
certain sens, elle résout la question d’irrégularité plus complètement que la condition de
M. Wald, elle ne parvient pas à donner un modèle arithmétique d’une suite présentant
tous les caractères d’une suite prise au hasard; ce dernier problème est considéré par
nous comme insoluble, et nous nous soumettons sur ce point à l’opinion de nombreux
mathématiciens, parmi lesquels MM. E. Borel, Fréchet, P. Lévi.”

64

just computable betting strategies, and thus defined computable randomness.

This provided Schnorr with another argument against the notion of Martin-

Löf randomness. Indeed, when defining randomness using betting strategies,

computable randomness is a much more natural notion than Martin-Löf ran-

domness. Moreover, Schnorr randomness appears again, when we require

that the profits of a betting strategy grow faster than some computable or-

der.

More on the history of martingales can be found in a dedicated issue of

the Journal Electronique d’Histoire des Probabilités et de la Statistique, in

particular in the article by Bienvenu, Shafer and Shen [5].

Martingales and computable randomness

A betting strategy can be represented by its capital function B. This function

maps each string σ to the amount of money that the better strategy has after

betting on the digits of σ. For example, suppose a gambler starts with one

unit of money, i.e. B(λ) = 1. He might suspect that the first digit of the

sequence is a zero, without being willing to risk all his money on this bet.

Consequently, his betting strategy might bet 1
2

on the first digit being a

one. If this is correct, then the gambler wins 1
2
, giving him a new capital of

B(0) = 3
2
. If the first digit is a one however, he loses 1

2
and remains with

only B(1) = 1
2
.

Next the gambler has to bet on the second digit. If the first digit turned

out to be a zero, then he might be convinced that the second digit will be

a zero as well. His betting strategy might then risk his entire capital on

the next digit being a zero. If this is correct, then he doubles his money

and obtains a capital of B(00) = 3. If the next digit is a one however,

65

then B(01) = 0, i.e. the gambler has lost all his money and cannot bet any

further. If the first digit turned out to be a one, then the gambler might bet

differently. For example, he might not have any clue what the next digit is

going to be. In this case, he could not bet anything at all on the second digit.

Consequently, he keeps the same capital, whatever the value of the second

digit, i.e. B(1) = B(10) = B(11) = 1
2
. We also call this betting evenly, as

the same result can be accomplished by betting an equal amount of money

on either outcome.

B(λ) = 1

B(0) = 3
2

B(1) = 1
2

B(00) = 3

B(01) = 0

B(10) = 1
2

B(11) = 1
2

Figure 3: The first few values of the martingale B, which is the capital
function of the example betting strategy in the text.

The first few values of the capital function B of this betting strategy are

shown in Figure 3. This is a function that satisfies

B(σ) =
B(σ0) +B(σ1)

2
(14)

for all strings σ. Such a function is called a martingale. Equation (14) is a

fairness condition: the expected value of the new capital must be equal to

the initial capital. Any betting strategy, as above, gives rise to a martingale,

and every martingale corresponds to a betting strategy. Hence we will use

the terms betting strategy and martingale interchangeably.

66

Definition.

A martingale is a function

B : 2<ω → R≥0

that satisfies

B(σ) =
B(σ0) +B(σ1)

2

for all strings σ. The martingale B succeeds on a sequence Z if

lim sup
n→∞

B(Z↾n) = ∞. (15)

A sequence Z is computably random if no computable martingale

succeeds on Z.

The terminology can be slightly confusing here. Passing a Martin-Löf

test is an indication of randomness, whereas success for a martingale is a

proof of non-randomness.

Remark 3.4.1. The fairness condition (14) serves to stop the gambler from

obtaining more money than he should deserve from his bets. However, there

is no cheating in throwing some money away (tips to the dealer, donations

to charity, some good Belgian beers; whatever you like). Therefore we can

loosen the requirement to an inequality:

B(σ) ≥ B(σ0) +B(σ1)

2
. (16)

Any function B : 2<ω → R≥0 satisfying this inequality is called a super-

martingale. For every (computable) supermartingale there exists a (com-

putable) martingale that succeeds on the same (and possibly more) sequences,

67

simply by saving any money that the supermartingale throws away. Therefore

it does not matter whether we define computable randomness using martin-

gales or supermartingales.

Remark 3.4.2. We formalized infinite profits by requiring that the lim sup

of the capital is infinity. One might call this jokingly the American concept

for success: it does not matter if you lose almost all of your money repeatedly,

because in the land of opportunity you’ll always have the possibility to grow

rich again. A more European condition for success would be to require a

more steady growth of capital, without repeated bankruptcies, i.e. the limit

(and not just the lim sup) of the capital should be infinity. So why didn’t

we use a limit to formalize infinite profits? In fact it does not matter. If

a (computable) martingale succeeds on a sequence Z in the American sense,

then we can construct another (computable) martingale B′ that succeeds on

Z in the European sense. Even stronger, we can require that the martingale

B′ satisfies the so-called savings property:

B′(τ) ≥ B′(σ) − 2 (17)

for all strings σ, τ where τ extends σ. This result is called the savings lemma

or the savings trick (see e.g. [7, Lemma 2.3], [16, 6.3.8] or [48, 7.1.14]).

We construct B′ by splitting the capital in a wallet, which initially contains

the whole initial capital, and a savings account. Whenever there are more

than 2 units of money in the wallet, we leave just 1 unit in the wallet, and

move the rest to the savings account. B′ bets on zeroes and ones in the same

proportions as B, but using only the money in the wallet and never touching

the money in the savings account. Hence, the profits of B′ will grow more

slowly compared to those of B. But even if B loses a dramatic amount of

68

money in some series of bets, B′ loses at most what is in the wallet, so at

most 2. This is illustrated in Figure 4.

wallet

savings account
B(Z ↾n) B′(Z ↾n)

1
2
3
4

n

Figure 4: The savings lemma.

Remark 3.4.3. We can restrict ourselves to (super)martingales with val-

ues in the rational numbers (or even dyadic rational numbers), where we

represent a rational number as a pair of natural numbers (numerator and

denominator). Indeed we can effectively approximate each computable (su-

per)martingale B : 2<ω → R≥0 with a computable (super)martingale D :

2<ω → Q≥0 such that whenever B succeeds on Z, then also D succeeds on

Z. The important advantage of this is that equality of rational numbers is a

computable relation. ([53, 9.3]; see also [16, 7.1.2] or [48, 7.3.8])

Remark 3.4.4. It is essential that a betting strategy is allowed to read the

values of previous digits in a sequence, before having to decide on how to

bet on the next digit. Indeed, suppose that we don’t allow this, and restrict

out attention to betting strategies b : N → [−1, 1] that bet a fraction b(n)

of their current capital on the value of the n’th digit being a zero. So if

b(n) = −1, then the betting strategy puts all its money on the n’th digit being

a one. If b(n) = 0, then the betting strategy bets evenly on the n’th digit.

69

Generally, if the n’th digit of the sequence is a zero, then the capital of the

betting strategy gets multiplied by a factor (1 + b(n)). If the n’th digit of the

sequence is a one, then the capital of the betting strategy gets multiplied by

a factor (1 − b(n)). Let’s call a sequence blindly computably random if no

such restricted computable betting strategy b : N → [−1, 1] succeeds on it.

This does not give us a suitable randomness notion, for the following reason.

Let Z be any blindly computably random sequence, and let Z be the se-

quence obtained from Z by taking two copies of every digit. For example,

if

Z = 0 1 1 0 1 1 0 0 1 0 1 . . .

then

Z = 00 11 11 00 11 11 00 00 11 00 11

We claim that Z will also be blindly computably random, in spite of the very

obvious pattern that every digit is repeated.

Suppose for contradiction that there is a blind computable betting strategy

b : N → [−1, 1] that succeeds on Z. Then the sequence of profits

n∏

i=0

(
1 + (−1)Z(i)b(i)

)

is unbounded as n→ ∞. So at least one of the sequences

n∏

i=0

(
1 + (−1)Z(2i)b(2i)

)

or
n∏

i=0

(
1 + (−1)Z(2i+1)b(2i+ 1)

)

70

must also be unbouded as n→ ∞. So either

b : N → [−1, 1] : i 7→ b(2i)

or

b : N → [−1, 1] : i 7→ b(2i+ 1)

defines a blind computable betting strategy that succeeds on the original se-

quence Z. Hence Z is not blindly computably random, in contradiction with

our assumptions.

It is even possible to construct a single blind computable betting strategy

b from b, such that whenever b succeeds on a sequence Z, then b succeeds on

the original sequence Z. For this, note that the square root of the sequence

of profits
n∏

i=0

√(
1 + (−1)Z(i)b(2i)

) (
1 + (−1)Z(i)b(2i+ 1)

)

is unbounded as n→ ∞. By the inequality of arithmetic mean and geometric

mean, we have

√
(1 + b(2i))(1 + b(2i+ 1)) +

√
(1 − b(2i))(1 − b(2i+ 1))

≤ 1 + b(2i) + 1 + b(2i+ 1) + 1 − b(2i) + 1 − b(2i+ 1)

2

≤ 2

so we can define a blind computable betting strategy b : N → [−1, 1] that when

betting on the i’th digit of Z, multiplies its capital by at least

√
(1 + b(2i))(1 + b(2i+ 1))

71

when the digit is a zero, and multiplies its capital by at least

√
(1 − b(2i))(1 − b(2i+ 1))

when the digit is a one. Hence the profits that b makes when betting on the

original sequence Z are unbounded, as required.

In conclusion, it is absolutely necessary that betting strategies are allowed

to look at the context of the digits that they are betting on, before deciding on

how to bet. Otherwise we do not get a suitable randomness notion.

Lemmas about martingales

Before studying the relation of computable randomness with other notions

of randomness, we prove a few useful lemmas.

The first lemma generalizes the fairness conditions (14) and (16). It is also

related to Doob’s optional stopping theorem from probability theory. It will

be used to prove that a Σ0
1 class generated by strings on which a martingale

makes a lot of profit, must have small measure.

Lemma 3.4.5.

• Let B be a martingale and let A be a prefix-free set of strings that

covers Cantor space (that is: JAK = 2ω). Then

∑

τ∈A

2−|τ |B(τ) = B(λ).

• Let B be a (super)martingale and let A be any prefix-free set of

strings. Then
∑

τ∈A

2−|τ |B(τ) ≤ B(λ).

72

Proof. • If B is a martingale, let m(σ) = 2−|σ|B(σ). By Lemma 2.2.1

there is a unique measure µm on Cantor space such that m(σ) =

µm(JσK) for all strings σ. Hence

∑

τ∈A

2−|τ |B(τ) =
∑

τ∈A

µmJτK

= µm(JAK)

= µm(2ω)

= B(λ),

as required.

• If B is a supermartingale, then we can define a martingale B′ such that

B′(σ) ≥ B(σ) for any string σ. Let m(σ) = 2−|σ|B′(σ). Again, by

Lemma 2.2.1 there is a unique measure µm on Cantor space such that

m(σ) = µm(JσK) for all strings σ. Hence

∑

τ∈A

2−|τ |B(τ) ≤
∑

τ∈A

2−|τ |B′(τ)

=
∑

τ∈A

µmJτK

= µm(JAK)

≤ µm(2ω)

= B(λ),

as required.

The next lemma shows how we can combine countably many martingales

into one new martingale, that succeeds on a sequence Z whenever any of the

73

original martingales succeeds on Z.

Lemma 3.4.6.

Let α0, α1, . . . be uniformly computable real numbers. Let B0, B1, . . .

be uniformly computable martingales such that
∑

i∈N
αiBi(λ) is a com-

putable real number. Then

∑

i∈N

αiBi

is a computable martingale.

Proof. Write

B =
∑

i∈N

αiBi.

Since
∑

i∈N
αiBi(λ) is finite, B is a well-defined real function. The linear

sum of martingales also preserves the martingale equality (14), so B is a

martingale. In order to compute a value B(σ), observe that if

∞∑

i=k

αiBi(λ) < 2−n−|σ|,

then
∞∑

i=k

αiBi(σ)

contributes at most 2−n to the value of B(σ). As
∑

i∈N
αiBi(λ) is computable,

we can find such a value for k effectively. Hence B is a computable martingale.

Finally, Lemma 3.4.7 shows how to construct a martingale that makes a

fixed amount of profit on a Σ0
1 class. The amount of profit that can be made

is inversely proportional to the measure of the Σ0
1 class.

74

Lemma 3.4.7.

Let W be a prefix-free c.e. set such that µJW K is a computable real num-

ber. There exists a computable martingale BW with initial capital µJW K
such that

BW (σ) = 1

for every σ that extends some element of W .

Proof. For any string σ, let Bσ be the martingale that starts with initial cap-

ital 2−|σ| and bets everything on σ being an initial segment of the sequence,

achieving a capital of 1 on all strings extending σ.

Let {σ0, σ1, . . .} be an effective enumeration of W . (Essentially the same

argument works is W is finite.) Note that

∑

i∈N

Bσi
(λ) =

∑

i∈N

2−|σi| = µJW K.

So by Lemma 3.4.6

BW =
∑

i∈N

Bσi

is a computable martingale that satisfies the requirements.

Relation with Martin-Löf, Schnorr and Kurtz random-

ness

Theorem 3.4.8 (see [48, 7.3.2]).

Computable randomness implies Schnorr randomness.

Proof. Suppose that the sequence Z is not Schnorr random, as witnessed by

the Schnorr test (Ui). Let Vi be a prefix-free c.e. set of generators of Ui.

75

Consider

B =
∑

i∈N

BVi
.

By definition of a Schnorr test, the measures µ(Ui) are uniformly computable

and µ(Ui) < 2−i, so
∑

i∈N

BVi
(λ) =

∑

i∈N

µ(Ui)

is a computable real number. By Lemma 3.4.6, B is a computable martingale.

As every BVi
achieves a capital of 1 along Z, B succeeds on Z. Therefore Z

is not computably random.

Note that the computability of the measures µ(Ui) is needed in order

to apply Lemma 3.4.6. Therefore the same argument does not work for

Martin-Löf randomness instead of Schnorr randomness. Indeed, computable

randomness does not imply Martin-Löf randomness, but the other direction

does hold.

Theorem 3.4.9.

Martin-Löf randomness implies computable randomness.

Proof. Suppose that the sequence Z is not computably random, as witnessed

by the martingale B. Suppose without loss of generality that B(∅) = 1. We

construct a Martin-Löf test (Ui) that succeeds on Z. The sets

Ui =
{
Y ∈ 2ω : ∃n such that B(Y ↾n) > 2i

}

are Σ0
1 classes uniformly in i. Moreover, we claim that µ(Ui) < 2−i. Indeed,

by Lemma 3.4.5 we have

∑

σ∈X

2−|σ|B(σ) ≤ B(λ) = 1

76

for every prefix-free set of strings X. Taking X to be the set of minimal

strings σ (for the prefix order) such that B(σ) > 2i, we get

µ(Ui) =
∑

σ∈X

2−|σ| <

∑
σ∈X 2−|σ|B(σ)

2i
≤ 2−i.

Consequently (Ui) is a Martin-Löf test, which by construction succeeds on

Z.

Though the above theorem only works in one direction, Martin-Löf ran-

domness can be characterized using martingales. We just need to use the

larger class of c.e. martingales. A c.e. martingale is a martingale B which

is the limit of an increasing sequence of uniformly computable martingales.

That is, B = limBs where Bs are computable martingales uniformly in s,

with (Bs(σ)) an increasing sequence for all strings σ. Equivalently, a c.e.

martingale is a martingale whose values are uniformly left-c.e..

Theorem 3.4.10 (Schnorr [53], see also [16, 6.3.4] or [48, 7.2.6]).

A sequence is Martin-Löf random if and only if no c.e. martingale suc-

ceeds on it.

Proof. The proof of Theorem 3.4.9 still works when B is an c.e. martingale.

Furthermore, the construction of Lemma 3.4.7 and the proof of Theorem 3.4.8

naturally adapt to give a c.e. martingale when starting from a Martin-Löf

test instead of a Schnorr test.

Computable martingales can succeed very slowly on non-random sequences.

If we require that martingales make profits at least as quickly as some com-

putable order, then we obtain weaker randomness notions. If we require

that

lim sup
n→∞

B(Z↾n)

h(n)
= ∞ (18)

77

for some computable order h, then we obtain Schnorr randomness. If we

require that

lim
n→∞

B(Z↾n)

h(n)
= ∞ (19)

for some computable order h, then we obtain a different notion, namely Kurtz

randomness.

Remark 3.4.11. The fact that Schnorr randomness and Kurtz random-

ness are different notions, means that the savings trick (Remark 3.4.2) no

longer works in this context. Indeed, suppose we try to apply the savings trick

anyway to a martingale B and a computable order h with

lim sup
n→∞

B(Z↾n)

h(n)
= ∞. (20)

We want to construct a new martingale B′ and find a computable order h′

such that

lim
n→∞

B′(Z↾n)

h′(n)
= ∞.

To obtain the latter, we need to have a computable lower bound on how quickly

the money in the savings account grows. We know from (20) that at some

point we will have B(Z↾n) > 2, at which point we put 1 unit of money in the

savings account, i.e. B′(Z↾m) ≥ 1 for all m ≥ n. Similarly, at some point

we have B(Z↾n) > 4 and hence B′(Z↾m) ≥ 2 for all m ≥ n. And so on.

However, the computability of the order h does not help to find a computable

lower bound on how quickly the money in the savings account grows, as it

doesn’t tell us at which position we will have B(Z↾n) > 2, etc. Indeed,

if the set of positions n where B(Z↾n) ≥ h(n) is sparse enough (certainly

hyperimmune, i.e. the principal function, that maps k to the k’th element of

this set, must not be dominated by any computable function), then the money

78

in the savings account might also grow more slowly than any computable

order. Hence we do not get any suitable computable order h′.

We now give proofs that (18) indeed characterizes Schnorr randomness

and that (19) indeed defines Kurtz randomness.

Theorem 3.4.12 (Schnorr [53], see also [16, 7.1.7] or [48, 7.3.3]).

A sequence is Schnorr random if and only if there does not exists a

computable martingale B and a computable order h such that

lim sup
n→∞

B(Z↾n)

h(n)
= ∞.

Proof. If there exists a martingale B and a computable order h such that

lim sup
n→∞

B(Z↾n)

h(n)
= ∞,

then we can adapt the proof of Theorem 3.4.9. The definition of Ui becomes

Ui =

{
Y ∈ 2ω : ∃n such that

B(Y ↾n)

h(n)
> 2i

}
.

In this case, µ(Ui) is computable, since values of n with h(n) ≥ 2k can only

contribute at most measure 2−i−k to µ(Ui), by the same argument as in the

proof of Theorem 3.4.9. Hence (Ui) is a Schnorr test that succeeds on Z.

For the other direction, suppose that (Ui) is a Schnorr test that succeeds

on Z. Suppose Ui = JWiK, where the Wi are uniformly c.e. prefix-free sets

of generators. Let W = ∪i∈NWi. Given k ∈ N, we can compute an f(k) such

that generators of length greater than f(k) contribute a computable measure

smaller than 2−2k to all of the Ui together. That is: let

Vk = {σ ∈W : |σ| > f(k)}.

79

Then
∑

σ∈Vk

2−|σ| < 2−2k.

The martingales BVk
from Lemma 3.4.7 make a capital 1 on every σ ∈ Vk. By

Lemma 3.4.6, B =
∑

k∈N
2kBVk

is a computable martingale. If σ is an initial

segment of Z with σ ∈ W and k ∈ N is such that f(k) < |σ| ≤ f(k + 1),

then

B(σ) ≥ 2kBVk
= 2k.

As we can take σ arbitrarily long, we have

lim sup
n→∞

B(Z↾n)

h(n)
= ∞,

for e.g. a computable order h that grows at the same rate as f−1.

Theorem 3.4.13 (Wang [63], see also [16, 7.2.13]).

A sequence is Kurtz random if and only if there does not exists a com-

putable martingale B and a computable order h such that

lim
n→∞

B(Z↾n)

h(n)
= ∞.

Proof. First, suppose there exists a martingale B and a computable order h

such that

lim
n→∞

B(Z↾n)

h(n)
= ∞.

Let n0 be such that B(Z↾n)
h(n)

≥ 1 for all n ≥ n0. Given i, pick an n ≥ n0 such

that h(n) ≥ 2i. Define

Ui =
q{
σ ∈ 2n : B(σ) ≥ 2i

}y
.

80

Then (Ui) is a Kurtz test that succeeds on Z.

Conversely, suppose that (Ui) is a Kurtz test that succeeds on Z. Suppose

Ui = JDiK where the Di are uniformly computable finite prefix-free sets of

generators. As µ(Ui) < 2i, Lemma 3.4.6 gives that

B =
∑

i∈N

BDi

is a computable martingale. Define the computable order h by h(n) = k

where k is the least integer such that there are is a strings of length greater

than n in Dk. If h(n) > 0, then all of BD0, . . . , BDh(n)−1
achieve a capital of

1 on Z↾n, so
B(Z↾n)

h(n)
≥ 1.

By picking a computable order h′ that grows a little more slowly than h, we

get

lim
n→∞

B(Z↾n)

h′(n)
= ∞,

as required.

Partial and nonmonotonic computable randomness

The notion of computable randomness can be strengthened in two different

directions. On the one hand we can allow partial betting strategies, giving

rise to the notion of partial computable randomness. On the other hand, we

can be flexible about the order in which we bet on the digits of a sequence,

which gives us non-monotonic variations of computable randomness.

81

Partial computable randomness

Partial computable randomness is defined just like computable random-

ness, except that the martingales used are allowed to be partial computable

functions 2<ω → R. The martingale equality (14) only applies when all terms

involved are defined. For a partial computable martingale B we also require

by convention that B(σ0) ↓ if and only if B(σ1) ↓, and this can only be the

case if already B(σ)↓ at some earlier stage.

If a partial martingale B is to succeed on a sequence Z, then B must

certainly be defined on all initial segments of Z (we also say: B is defined

along Z). However, B may be undefined on some other strings. Intuitively,

a partial computable betting strategy can be forever undecided on certain

bets. For example, this allows us to make bets along the lines of: “wait

until England wins another football World Cup, then bet on the next digit

according to the final score of the final.” As this might never happen, we

cannot do this in a total betting strategy. In a partial betting strategy

however, we can do this. Hence we have ways of betting that where not

available to us before. That partial computable randomness is indeed a

strictly stronger notion than (total) computable randomness will be proven

in Theorem 4.1.1.

Non-monotonic computable randomness

Non-monotonicity (first introduced in the context of stochasticity by Kol-

mogorov [27] and Loveland [36] [35]) means that we are flexible in the order

in which we bet on the digits of a sequence. We might for example bet on

the second digit before betting on the first digit. Then how we bet on the

first digit can depend on the value of the second digit. It is not important

that we bet place a bet on all digits of a sequence, as we can ignore certain

82

digits anyway by betting evenly one them.

The order in which to bet on the digits can be fixed in advance, for

example by a computable permutation or a computable injection. A (partial)

permutation/injection betting strategy is then a pair 〈f, B〉 of a computable

permutation/injection f : N → N, which maps n to the position for the n’th

bet, and a (partial) computable martingale B. The non-monotonic betting

strategy 〈f, B〉 succeeds on a sequence Z if

lim sup
n→∞

B ((Z ◦ f)↾n) = ∞.

(Note that (Z ◦ f) conveniently gives us the sequence of digits that we bet

upon in the correct order.) The resulting notions are partial/total per-

mutation randomness and partial/total injection randomness. Total

permutation randomness is in fact equivalent to computable randomness (see

Theorem 3.4.14 below).

We can take non-monotonicity even further by not fixing the order in

advance. Instead, we can allow the next position that we bet on to depend

on the outcomes of the previous bets. For example, we might bet on the

second position first. If the second digit is a zero, we might go back to bet

on the first digit, while if the second digit turns out to be a one, then we

might to on to bet on the tenth digit next. And so on, as long as we pick the

next position in a computable way, and we don’t bet on the same position

more than once. The resulting notion is called Kolmogorov-Loveland

randomness. Kolmogorov-Loveland betting strategies can be partial in the

martingale as well as in the rule used to select the next position, but none

of this matters, as the total and partial variations of Kolmogorov-Loveland

randomness are equivalent (see Theorem 3.4.15 below).

Remarks 3.4.1-3.4.4 generalize to all partial and non-monotonic notions

83

of randomness as well. Moreover, the proof of Theorem 3.4.9 can be adapted

to prove that Martin-Löf randomness not only implies computable random-

ness, but it even implies the strongest variation of computable randomness,

namely Kolmogorov-Loveland randomness. It is an open question whether

this implication is strict or not.

Two equivalences

As mentioned above, there are two equivalences involving the variations of

computable randomness that we have introduced. Firstly, total permuta-

tion randomness is equivalent with (total) computable randomness. In other

words, computable randomness is closed under computable permutations.

Closure under computable permutations is trivial for randomness notions

defined using measure theoretic tests such as Martin-Löf randomness, but

not for variations of computable randomness. Indeed, partial computable

randomness will turn out to be not closed under computable permutations.

But first we prove that computable randomness is closed under computable

permutations.

Theorem 3.4.14 (Buhrman et al. [7, Section 4], see also [24, section

2.3] and [48, 7.6.24]).

Total permutation randomness and computable randomness are equiva-

lent.

Proof. For the non-trivial direction, suppose that (B, f) is a total permuta-

tion betting strategy that succeeds on a sequence Z. We can assume without

loss of generality that B satisfies the savings property (17). We construct a

84

computable martingale B that succeeds on Z. Define for all strings σ

B(σ) =
∑

τ≻σ
|τ |=l

2−(|τ |−|σ|)B(τ ◦ f↾n)

where l, n ∈ N have values such that

{0, . . . , |σ| − 1} ⊆ {f(0), . . . , f(n− 1)} ⊆ {0, . . . , l − 1}.

That is: in the first n bets the permutation betting strategy bets on all

the first |σ| digits, but on no other than the first |τ | digits, for the strings τ

extending σ that we consider. B(σ) can be seen as the expected capital of the

permutation betting strategy over long enough strings extending σ. It can be

verified using induction that B(σ) is independent of the particular choice of l

and n, and that B is a total computable martingale. Furthermore, there is for

all i ∈ N an ni ∈ N and an initial segment σi of Z such thatB(σi◦f↾ni
) > i+1.

Using the savings property (17), we get that B(τ ◦ f↾n) > i for all strings τ

extending σi and suitable values of n. Consequently

B(σi) > i

for all i. So B is a computable martingale that succeeds on Z, and Z is not

computably random.

Secondly, an elegant argument by Wolfgang Merkle shows that the total

and partial versions of Kolmogorov-Loveland randomness are equivalent.

Theorem 3.4.15 (Merkle [41, Remark 6], see also [16, 7.5.4] and [48,

7.6.25]).

The partial and total versions of Kolmogorov-Loveland randomness are

equivalent.

85

Proof. For the non-trivial direction, suppose that some partial Kolmogorov-

Loveland betting strategy succeeds on a sequence Z. Then the betting strat-

egy also succeeds by betting in the same way on either just the odd positions

of Z and simply reading the even positions of Z, or the other way around.

Suppose the former is the case. We define a total Kolmogorov-Loveland bet-

ting strategy that succeeds on Z as follows. Read successive even positions of

the sequence, while trying to compute the next bet that the partial betting

strategy prescribes. If this is a bet on an even position, then simply read

that digit (if not already read) and continue as before. If it is a bet on an

odd position, then do the same bet and continue as before. Note that if the

partial betting strategy is not defined on some sequence Y , then the new

betting strategy still keeps on reading more and more even positions, so it is

in fact total. The total betting strategy bets in the same way as the partial

betting strategy on the odd positions of Z, and by assumption this is enough

for the betting strategy to succeed on Z.

3.5 Randomness and differentiability

Another, more recent approach to defining randomness, is to define non-

random real numbers as the points of differentiability of computable real

functions. Here we are mainly speaking about the randomness of real num-

bers, as opposed to randomness of binary sequences. This difference is easily

overcome by identifying a real number with the sequence containing its bi-

nary expansion. The only real numbers with two different binary expansions

are rational numbers, and then both expansions are non-random (even com-

putable), so there is no issue with this.

There are different ways of going about defining computability for real

86

functions. A common definition [50] goes as follows:

Definition.

A function f : [0, 1] → R is computable if

1. there is a sequence (xi) of uniformly computable real numbers that

is dense in [0, 1], such that (f(xi)) is uniformly computable, and

2. f is uniformly effectively continuous, i.e. there is a computable

function h : N → N such that |f(y) − f(x)| < 2−n whenever

x, y ∈ [0, 1] with |y − x| < 2−h(n).

The sequence in point 1. of the definition could for example be an enu-

meration of all rational numbers, or all dyadic rational numbers.

For different classes of computable functions [0, 1] → R, we can argue

that is only possible to construct such a function that is not differentiable

at a real number x ∈ [0, 1], if there is some regularity in x that can guide

us in the construction. Different classes of functions lead to different notions

of randomness. The larger the class of computable functions, the stronger

the corresponding randomness notion. However, the class of all computable

functions is too large, by the following theorem.

Theorem 3.5.1.

There exists a computable function [0, 1] → R which is nowhere differ-

entiable.

Proof. We use the construction of the blancmange function4, a well-known

example of a continuous function that is nowhere differentiable, and we show

that this function is computable.

4The function is named after the dessert blancmange because the shape of its curve
resembles the shape of the dessert. It is also known as the Takagi curve, after the Japanese
mathematician Teiji Takagi who first defined it [59].

87

The blancmange function is an infinite sum of sawtooth functions. Specif-

ically, letting s : R → R be the function mapping every real to the distance

to the closest integer, we use the sawtooth functions

fn : [0, 1] → R

x 7→ s(2nx)

2n

and define the blancmange function as

g =
∑

i∈N

fi.

We also define the partial sums

gn =

n∑

i=0

fi

for all n ∈ N.

We first prove that g is not differentiable at any point z ∈ [0, 1]. First

suppose that z is a dyadic rational, in particular that z = i
2n where i is odd.

(This supposes z 6∈ {0, 1}, but these cases can be treated similarly.) Now fi

is differentiable at z for i ≤ n− 2. The sum fn−1 + fn is constant (and hence

also differentiable) at z. Hence differentiability of g at z is equivalent with

differentiability of

hn = g − gn =

∞∑

i=n+1

fi

at z. A direct calculation shows that hn(z) = 0 and

hn

(
z +

1

2n+m+1

)
=

m

2n+m+1

88

0

1
2

1

1
2

1

f0

0

1
4

1

1
4

1
2

3
4

1

f1

0

1
8

1

1
4

1
2

3
4

1

f2

0

1
2

1

1
2

1

g0

0

1
2

1

1
2

1

g1

0

1
2

1

1
2

1

g2

. . .

. . .

Figure 5: The sawtooth functions fn and partial sums gn used to define
the blancmange function.

for all m ∈ N. So the slopes

hn

(
z + 1

2n+m+1

)
− hn(z)

1
2n+m+1

= m

diverge for m→ ∞, contradicting differentiability of hn at z. Therefore g is

not differentiable at z.

Secondly, suppose that z is not a dyadic rational. Then for each n, there

is an in ∈ N such that z ∈
(

in
2n ,

in+1
2n

)
. If g were differentiable at z, then the

slopes
g
(

in+1
2n

)
− g

(
in
2n

)

2n
(21)

89

must converge to the derivative at z for n→ ∞. However, we have

g
(

in+1
2n

)
− g

(
in
2n

)

2n
=
gn−1

(
in+1
2n

)
− gn−1

(
in
2n

)

2n

= g′n−1(z),

the first equality because fi is 0 on multiples of 1
2n for i ≥ n, the second

equality because f0, . . . , fn−1 are linear on the intervals
[

i
2n ,

i+1
2n

]
for any i.

Moreover,
∣∣g′n(z) − g′n−1(z)

∣∣ = |f ′
n(z)| = 1

for all n, so (g′n(z)) is not a Cauchy sequence, contradicting the convergence

of (21). So g is not differentiable at z.

It remains to show that g is computable as a real function [0, 1] → R. It is

certainly uniformly computable on dyadic rationals, where only a finite sum

is involved. For uniform effective continuity, let ǫ > 0 be given. Pick some n

such that 2−n < ǫ
3
, and hence |g(x)−gn(x)| ≤ 2−n < ǫ

3
for all x ∈ [0, 1]. Take

δ = ǫ
3(n+1)

and take any x, y ∈ [0, 1] with |x− y| < δ. Because gn consists of

line segments whose slopes have absolute values of at most n + 1, we have

|gn(x) − gn(y)| ≤ (n+ 1)δ = ǫ
3
. So finally,

|g(x) − g(y)| ≤ |g(x) − gn(x)| + |gn(x) − gn(y)|+ |gn(y) − g(y)| < ǫ,

as required.

By considering smaller classes of computable functions, we obtain new

definitions for different notions of randomness.

90

Theorem 3.5.2 (Brattka, Miller and Nies [6]).

a. A real number x ∈ [0, 1] is computably random if and only if every

nondecreasing computable function [0, 1] → R is differentiable at

x.

b. A real number x ∈ [0, 1] is Martin-Löf random, if and only if every

computable function [0, 1] → R of bounded variation is differen-

tiable at x, if and only if every absolutely continuous computable

function [0, 1] → R is differentiable at x.

c. A real number x ∈ [0, 1] is weakly 2-random if and only if every

almost everywhere differentiable computable function [0, 1] → R is

differentiable at x.

For exact definitions and proofs, see [6]. We limit ourselves to providing a

few remarks about the result for computable randomness. Suppose we have

a computable martingale B, such that there is no sequence Z such that

lim
n→∞

B(Z↾n)

2n
> 0.

This extra condition is necessary to make the function f below effectively

uniformly continuous, and is no real restriction, since such a sequence Z

is always computable, being an isolated path of a Π0
1-class. We define a

nondecreasing computable function f by setting

f(x) =
∑

σ∈X

2−|σ|B(σ)

where X is some prefix-free set of strings that generate the class of reals in

[0, 1] which are less than x. It is straight-forward to verify that if B succeeds

on x, then f is not differentiable at x. Indeed, if x ∈ [q, q + 2−n], where q is

91

a integer multiple of 2−n, and B(x↾n) > k, then we have

f(q + 2−n) − f(q)

2−n
= B(x↾n) > k,

so the slopes of f around x are unbounded.

Conversely, from a nondecreasing computable function such that f(0) =

0, one can reconstruct the corresponding martingale. Still, this is not enough

to prove the other direction of Theorem 3.5.2a, because even when a martin-

gale B does not succeed on x, it could still be that the corresponding function

f is not differentiable at x. Details on how to get around this are in [6].

Base-invariance of computable randomness

Up to now, we have only considered randomness in base 2, where reals in

[0, 1] correspond to infinite sequences of zeroes and ones. We could also

consider expansions in other bases and therefore define randomness for in-

finite sequences in 3ω, 4ω, The definitions for Martin-Löf randomness,

computable randomness, and most other randomness notions translate in a

natural way to other bases.

Definition.

A randomness notion which can be defined in any base is base-invariant

if for every k, l ≥ 2 and every real number x ∈ [0, 1], the base k expan-

sion of x is random (among sequences in kω) if and only if the base l

expansion of x is random (among sequences in lω).

For notions defined using measure theory, like Martin-Löf randomness,

the base that is used does not influence the randomness of the expansion of

a real number. Hence Martin-Löf randomness is base-invariant. Computable

92

randomness however, is defined using martingales, which directly use the

digits of the expansion rather than its value as a real number. Therefore

there is no immediate way of proving that computable randomness is base-

invariant. Theorem 3.5.2a provides the only known proof of this fact, as it

gives a characterization of computable randomness using differentiability of

real functions, which does not depend on the base used.

The base-invariance of other variants of computable randomness, like par-

tial computable randomness and Kolmogorov-Loveland randomness, remains

an open problem. There is also an additional complication in defining base

k partial computable randomness, for k > 2. When considering partial com-

putable martingales

B : k<ω → [0,∞),

do we require that whenever B(σi) is defined for some σ ∈ k<ω and some i ∈
{0, . . . , k−1}, then also B(σi) is defined for all other values of i ∈ {0, . . . , k−
1}? In terms of betting strategies: whenever we make a decision on how much

money we want to make on one outcome for the next digit, do we immediately

have to decide on how much to bet on the other outcomes as well? Let’s

call the resulting notion weak base k partial computable randomness.

Alternatively, do we allow ourselves to think a little longer about how to bet

on the other outcomes, potentially never coming to a decision about this at

all? Let’s call this strong base k partial computable randomness. Note

that this last notion can only be formalized using supermartingales rather

than martingales, using the condition that

B(σ) ≥ 1

k

∑

i∈{0,1,...,k−1}
B(σi)↓

B(σi)

 (22)

93

for all strings σ such that B(σ)↓.
Let (Bk

n)n∈N be an effective enumeration of all weak base k partial com-

putable supermartingales, and (B
k

n)n∈N an effective enumeration of all strong

base k partial computable supermartingales.

Theorem 3.5.3.

Let k > 2. There is a strong base k partial computable supermartingale

B that succeeds on a different set of sequences than any weak base k

partial computable supermartingale.

Proof. For any n ∈ N, we will use strings that extend 0n1 to diagonalize

against the n’th weak base k partial computable supermartingale Bk
n. We

will make sure that B succeeds on some sequence that extends 0n1 on which

Bk
n does not succeed.

For any n, set B(0n) = 1 and B(0n1) = 1. Furthermore, once B is defined

on some string σ = 0n1τ , say B(σ) = x, set

B(σ0) =
3

2
x.

Then wait until Bk
n(σ0) halts (if ever). Because Bk

n is a weak supermartingale,

we then also have Bk
n(σi)↓ for all i ∈ {0, . . . , k − 1}. For at least one such i,

we have Bk
n(σi) ≤ Bk

n(σ). Pick the least such i, and set

B(σi) =
3

2
x.

(If i = 0, this was already defined before.) As k ≥ 3, B satisfies the super-

martingale inequality in the sense of (22). So B is a strong base k partial

computable supermartingale.

94

Take any n ∈ N. We now claim that B succeeds on some sequence on

which Bk
n does not succeed. Consider the sequence Z with

Z↾n+1 = 0n1

and which is further defined inductively as follows:

Z(m) =

the least i such that Bk
n(Z↾mi) ≤ Bk

n(Z↾m) if Bk
n(Z↾m0)↓,

0 otherwise,

for any m ≥ n + 1. By definition, Bk
n does not succeed on this sequence.

However, B does succeed on this sequence, as

B(Z↾n+1+m) =

(
3

2

)m

for any m ∈ N.

It might still be possible that the strong and weak notions of base k

partial computable randomness coincide. That is: even though the individual

success sets of the different types of martingales are different, the union of the

success sets might still be the same for both types. This is an open problem.

Question 3.5.4.

For k > 2, are the notions of weak and strong base k partial computable

randomness equivalent?

95

3.6 Randomness and ergodic theory

The following theorem is implicitly due to Kučera ([29], Lemma 3):

Theorem 3.6.1.

Let U be a Σ0
1 class of measure less than 1. If Z is a Martin-Löf random

sequence, then some tail of Z is not in U .

Proof. We prove the contrapositive: if all tails of Z are in U , then Z is not

Martin-Löf random.

As U is a Σ0
1 class, there is a prefix-free c.e. set W such that U = JW K.

Let

W n = {σ0σ1 . . . σn−1 : σ0, σ1, . . . , σn−1 ∈W}

and

Un = JW nK.

By induction Z ∈ Un for every n. The Un are Σ0
1 classes uniformly in n, and

because W is prefix-free we have

µ(Un) = µ(U)n.

Now pick an n0 such that µ(U)n0 < 1
2

and let

Vn = Un0·n.

Then (Vn) is a Martin-Löf test that succeeds on Z. So Z is not Martin-Löf

random.

96

Corollary 3.6.2.

Let (Un) be a universal Martin-Löf test and let n be a positive integer.

The following are equivalent:

1. Z is Martin-Löf random

2. for any Σ0
1 class U of measure less than 1, some tail of Z is not in

U .

3. for any Σ0
1 class U of measure less than 1, infinitely many tails of

Z are not in U .

4. infinitely many tails of Z are not in Un.

5. some tail of Z is not in Un.

Proof. 1. =⇒ 2. is Theorem 3.6.1.

For 2. =⇒ 3., note that any tail of a Martin-Löf random sequence is

itself Martin-Löf random. So we can apply 1. =⇒ 2. to any tail of Z, to

find infinitely many different tails of Z that are not in U .

3. =⇒ 4. is immediate as Un is a Σ0
1 class of measure less than 1.

For 5. =⇒ 1., note that (Un) is a universal test, so any sequence that is

not Martin-Löf random, is contained in Un. As some tail of Z is not in Un,

that tail must be Martin-Löf random, so Z itself must be as well.

4. and 5. are interesting because they give us characterizations of Martin-

Löf randomness that only involve one particular Σ0
1 class, instead of infinitely

many as in a Martin-Löf test.

2. and 3. are interesting because they give us a characterization of Martin-

Löf randomness in terms of ergodic theory. Ergodic theory deals with ergodic

transformations. Those are measure-preserving transformations T of some

97

space X, such that whenever T−1(E) = E, E has measure 0 or measure 1. In-

tuitively, ergodic transformations are transformations that mix up the whole

space, without keeping any two sizeable subsets of X separated. The shift

operator, that removes the first digit from a sequence, is an ergodic trans-

formation of the Cantor space by Kolmogorov’s 0-1 law (see [16, 1.2.4] or

[48, 1.9.12]). This starts off an interaction between algorithmic randomness

and ergodic theory. For example, 3. can be reformulated using terminology

from ergodic theory to say that Z is Martin-Löf random if and only if Z is a

Poincaré point for the shift operator with respect to the collection of all Π0
1

classes [18]. See also [2] and [1] for more results connecting randomness and

ergodic theory.

3.7 Comparison of stochasticity and random-

ness

Now we have rigorously defined the necessary notions of randomness, we can

study the relation between stochasticity and randomness in detail. First, we

show how to turn a selection rule into a martingale. This proves that par-

tial computable randomness implies Mises-Wald-Church stochasticity, that

computable randomness implies Church stochasticity and that Schnorr ran-

domness implies weak Church stochasticity. In particular, sequences that are

random for Schnorr randomness or stronger notions, always satisfy the law of

large numbers. (This does not hold for Kurtz randomness.) Next, we study

how randomness tests can be constructed directly from selection rules. This

provides an alternative way to prove some of the results from the preceding

subsection. Finally, we show that Ville’s theorem does not apply to any of

the randomness notions that we have defined, not even to the weakest notion

of Kurtz randomness.

98

From selection rules to martingales

Theorem 3.7.1.

Partial computable randomness implies Mises-Wald-Church stochastic-

ity.

Proof (adapted from [16, p. 302]). Suppose a sequence Z is not Mises-Wald-

Church stochastic. Without loss of generality we suppose that there is a

partial computable selection rule s such that s(Z) is an infinite sequence and

zeroes(s[Z]↾n)
n

> 1
2

+ ǫ for infinitely many n, where ǫ > 0 is a fixed constant.

For every computable real x ∈ (0, 1), we define a partial computable betting

strategy Bx, such that Bx succeeds on Z for any x that is small enough.

Given Bx(σ), the betting strategy tries to compute s(σ). If s(σ)↓= no,

then Bx(σ0) = Bx(σ1) = Bx(σ). If s(σ)↓= yes, then Bx(σ0) = (1+x)Bx(σ)

and Bx(σ1) = (1 − x)B(σ). Now, let n be such that

zeroes (s[Z]↾n)

n
>

1

2
+ ǫ,

and m(n) such that |s(Z↾m(n))| = n. Then

Bx(Z↾m(n)) > (1 + x)n(1
2
+ǫ)(1 − x)n(1

2
−ǫ),

so

log(Bx(Z↾m(n))) > n

((
1

2
+ ǫ

)
log(1 + x) +

(
1

2
− ǫ

)
log(1 − x)

)
.

The function

h : [0, 1) → R : x 7→
(

1

2
+ ǫ

)
log(1 + x) +

(
1

2
− ǫ

)
log(1 − x)

99

has a derivative h′(x) =
(1

2
+ǫ)

1+x
− (1

2
−ǫ)

1−x
which satisfies h′(0) = 2ǫ > 0. Since

h(0) = 0, we have h(x) > 0 for x ∈ (0, 1) small enough. For such an x that

is computable, we have

log(Bx(Z↾m(n))) > nh(x)

and since we have infinitely many choices for n, we have

lim sup
m→∞

Bx(Z↾m) = ∞.

So Bx is a partial computable betting strategy that succeeds on Z, as re-

quired.

Theorem 3.7.2.

Computable randomness implies Church stochasticity.

Proof. The construction in the proof of Theorem 3.7.1 can be copied exactly,

noting that if s is a total computable selection rule, then every Bx is a total

computable martingale.

Theorem 3.7.3.

Schnorr randomness implies weak Church stochasticity.

Proof. The construction in the proof of Theorem 3.7.1 can again be used.

Indeed, suppose s is a computable selection rule such that s(Y) is defined

and infinite for every Y . Let g(m) = minσ∈2m |s[σ]|. This is a computable

order by König’s Lemma. Let g′ be any computable order that grows more

slowly than exp(g), Then

log(Bx(Z↾m(n))) > nh(x) ≥ g(m(n)) h(x)

100

for infinitely many values of n, so

lim sup
m→∞

Bx(Z↾m)

g′(m)
= ∞,

as required by Theorem 3.4.12.

From selection rules to randomness tests

In this section, we directly construct Martin-Löf tests that capture sequences

that are not Mises-Wald-Church stochastic, and Schnorr tests that capture

sequences that are not weakly Church stochastic. There results are implied

by the previous section. However, I feel that the different approach has its

own merit.

We first prove that any sequence that every Schnorr random sequence

satisfies the law of large numbers.

Theorem 3.7.4.

Every Schnorr random satisfies the law of large numbers.

Proof. Let Z be a sequence that does not satisfy the law of large numbers.

Without loss of generality, we suppose that

zeroes(Z↾n)

n
>

1

2
+ ǫ

for some fixed ǫ > 0 and for infinitely many values of n. Define

Vi =
{
JσK : σ ∈ 2i and zeroes(σ)

i
> 1

2
+ ǫ
}

and

Ui =

∞⋃

j=i

Vj.

101

(We suppose i > 0 throughout this proof.) The classes Ui are uniformly Σ0
1

and by definition Z ∈ ∩i∈NUi. To bound and compute the measure of Ui, we

cam use some concentration inequality from probability theory. For example,

Hoeffding’s [23] inequality gives that

µ(Vi) < e−2ǫ2i.

(A similar bound can be obtained using related inequalities like the Bernstein

inequalities or the Chernoff bound [13].) Hence

µ(Ui) ≤
∞∑

j=i

µ(Vj)

<

∞∑

j=i

e−2ǫ2i

<

∫ ∞

i−1

e−2ǫ2i di

=
1

2ǫ2
e−2ǫ2(i−1).

This provides a computable bound on how fast µ(Ui) converges to 0, so (Ui)

is a Martin-Löf test. Moreover, as µ(Vj) is computable uniformly in j, and
∑∞

j=i µ(Vj) converges to 0 at a computable rate as i→ ∞, the measures µ(Ui)

are computable uniformly in i. So (Ui) is a Schnorr test. As Z ∈ ∩i∈NUi, Z

is not Schnorr random.

This proof does not produce a Kurtz test. Indeed, remember that there

are Kurtz random sequences that do not satisfy the law of large numbers.

More generally, when we require the law of large numbers to hold not just

for the sequence itself, but for any subsequence obtained by some computable

selection rule, then we obtain stochasticity. To what extent can the proof of

Theorem 3.7.4 be adapted to show that randomness implies stochasticity?

102

We first prove a lemma.

Lemma 3.7.5. 1. Let s be a partial selection rule. Consider the set

s−1[JσK] of sequences Z such that s(Z) is an infinite sequence that

starts with σ. Also consider the set Js−1[σ]K of sequences Z such

that s(τ) = σ for some initial segment τ of Z. Then

µ(s−1[JσK]) ≤ µ(Js−1[σ]K) ≤ µ(JσK) = 2−|σ|.

2. Let s be a selection rule such that s(Z) is infinite for every sequence

Z. Then

µ(s−1[JσK]) = µ(Js−1[σ]K) = µ(JσK) = 2−|σ|.

Proof. 1. The first inequality is trivial since s−1[JσK] ⊆ Js−1[σ]K. For the

second inequality, define a partial computable betting strategy B that

starts with an initial capital of 2−|σ|. When betting on a sequence Z, B

computes s along Z, and on the first |σ| positions that are selected, bets

everything on the digits being the corresponding digits of σ. Hence,

B makes a capital of 1 on every element of Js−1[σ]K. Let S be the

prefix-free set of minimal strings in s−1[σ]. By Lemma 3.4.5,

µ(Js−1[σ]K) =
∑

σ∈S

2−|σ|

=
∑

σ∈S

2−|σ|B(σ)

≤ B(λ)

= 2−|σ|,

proving the second inequality.

103

2. If s(Z) is total for every Z, then s−1[JσK] = Js−1[σ]K, proving the first

equality. Also, let S be the set of minimal strings τ such that s selects

a string of length |σ| from τ . Then S is a prefix-free set of strings that

covers Cantor space. Define B as above, we have for τ ∈ S that

B(τ) =

1 if s(τ) = σ,

0 otherwise.

By Lemma 3.4.5

µ(Js−1[σ]K) =
∑

τ∈S
s(τ)=σ

2−|τ |

=
∑

τ∈S

2−|τ |B(τ)

= B(λ)

= 2−|σ|,

as required.

Since open cylinders generate the Borel σ-algebra, this lemma shows that

µ(s−1[A]) ≤ µ(A) for any Borel set A ⊆ 2ω.

Moreover, if s(Z) is infinite for every sequence Z, then µ(s−1[A]) = µ(A)

for any Borel set A. That is, A 7→ s[A] is a measure preserving transforma-

tion of Cantor space.

We are now ready to give an alternative proof of the following corollary

of Theorem 3.7.1.

Theorem 3.7.6.

Martin-Löf randomness implies Mises-Wald-Church stochasticity.

104

Proof. Define

Vi =
{
JσK : σ ∈ 2i and zeroes(σ)

i
> 1

2
+ ǫ
}

as in Theorem 3.7.4. If s is a partial computable selection rule then we also

define

V s
i =

{
JτK : τ ∈ 2<ω and |s[τ]| = i and zeroes(s[τ])

i
> 1

2
+ ǫ
}

=
{
s−1[JσK] : σ ∈ 2i and zeroes(σ)

i
> 1

2
+ ǫ
}
.

By Lemma 3.7.5 we have µ(V s
i) ≤ µ(Vi), so we get a Martin-Löf test (Us

i) as

in the proof of Theorem 3.7.4. Every sequence Z such that s(Z) is infinite

and does not satisfy the law of large numbers, fails this test, as required.

Contrary to the proof of Theorem 3.7.4, we do not get a Schnorr test here.

This is because an inequality in µ(V s
i) ≤ µ(Vi) might make the measures

µ(V s
i) incomputable. This is even the case if we only allow total computable

selection rules. Indeed, Yongge Wang proved in his PhD thesis [63] (see also

[16, p. 330]) that Schnorr randomness does not imply Church stochasticity.

However, we already proved in Theorem 3.7.3 that Schnorr randomness

does imply weak Church stochasticity. We give an alternative proof of this,

using our current approach.

Theorem 3.7.7.

Schnorr randomness implies weak Church stochasticity.

Proof. We proceed exactly like in the proof of Theorem 3.7.6 above. However,

we now only need to consider selection rules s that select an infinite sequence

s[Z] from every sequence Z. By Lemma 3.7.5 we know that such a selection

105

rule satisfies µ(s−1[JσK]) = µ(JσK) for every string σ. Consequently we have

an equality in µ(V s
i) = µ(Vi) and we get a Schnorr test just like in the proof

of Theorem 3.7.4.

Randomness versus stochasticity: Summary

The relations between randomness and stochasticity notions are summarized

in Figure 6. No additional implications hold between these notions, other

than the ones implied by Figure 6. Indeed, we will prove that partial com-

putable randomness is strictly stronger than computable randomness in The-

orem 4.1.1. Nies, Stephan and Terwijn proved that every high Turing degree

contains a sequence that is Schnorr random but not computably random

(see Theorem 4.3.1 below). Kurtz randomness does not imply any other no-

tion because it is the only notion with sequences that do not satisfy the law

of large numbers. Ville’s theorem prohibits any implications from stochas-

ticity notions to randomness notions (see next subsection). As mentioned

above, Schnorr randomness does not imply Church stochasticity as proven

by Wang. Finally, Klaus Ambos-Spies proved that computable randomness

does not imply Mises-Wald-Church stochasticity (see [16, 7.4.7]).

We can now also justify our newly defined notion of weak Church stochas-

ticity. We have proven that it is different from the other stochasticity no-

tions, in that it is implied by Schnorr randomness where the others are not.

Weak Church stochasticity seems to fit into Figure 6 naturally, correspond-

ing to Schnorr randomness, just like Church stochasticity corresponds to

computable randomness and Mises-Wald-Church stochasticity corresponds

to partial computable randomness. This correspondence can be further ex-

tended by defining non-monotonic notions of stochasticity in analogy with

the non-monotonic versions of computable randomness.

106

partial
computable
randomness

computable
randomness

Schnorr
randomness

Kurtz
randomness

Mises-Wald-Church
stochasticity

Church
stochasticity

weak
Church

stochasticity

Figure 6: The relations between randomness and stochasticity notions. No
additional implications hold between these notions.

107

Randomness and Ville’s theorem

Remember that Ville’s theorem (Theorem 3.1.2) showed that there are always

some sequences with at least as many zeroes as ones in every initial segment,

that are nonetheless stochastic. We now show that such sequences cannot be

random, not even for the weakest notion of Kurtz randomness. Hence, Ville’s

theorem does not pose an objection to any of our definitions of randomness.

Lemma 3.7.8.

Let An be the set of strings of length n such that every initial segment

has at least as many zeroes as ones.

|An| =

(
n⌊
n
2

⌋
)
.

I give an elegant combinatorial proof, which is attributed by Feller [17]

to E. Nelson. The method is similar to the reflection method solution to

Bertrand’s Ballot Problem (see e.g. [52]).

Proof. First suppose n is even.

Instead of counting strings, we will use a more visual approach. We will

count the number of walks on the nonnegative integers (i.e. on the graph

whose vertices are the nonnegative integers, and whose edges connect exactly

the consecutive integers) of length n and starting at 0. The strings that we

need to count in the theorem are in one-on-one correspondence with these

walks, by letting the digit 0 correspond to a step to the next integer, and the

digit 1 correspond to a step to the previous one. We will put these walks on

the nonnegative integers in a one-on-one correspondence with the walks on

the integers of length n that start at 0 and also end at 0. Of these there are

exactly

(
n
n
2

)
, because to define such a walk, we need just to specify exactly

which n
2

of the n steps will be to the next integer.

108

To make the required one-on-one correspondence between the two classes

of walks, we represent each walk by the graph of the function {0, . . . , n} → Z

that maps each i ∈ {0, . . . , n} to the position after exactly i steps of the walk.

Suppose that we are given a walk on the nonnegative integers of length

n, starting at 0, and ending at some position m (where m must be even since

n is even). To find the corresponding walk on the integers that starts and

ends at 0, find the last step at which the given walk is at position m
2
. Reflect

the part of the graph to the right of this step around a vertical reflection

axis, and put it in front of the other part of the graph, like in Figure 7. The

resulting graph represents a walk on the integers of length n that starts and

ends at 0.

00010010

10110001

reflection

Figure 7: The one-on-one correspondence between walks on the nonneg-
ative integers of length n starting at 0, and the walks on the integers of
length n both starting and ending at 0.

In the other direction, suppose that we are given a walk on the integers

of length n that starts and ends at 0. We can recover the corresponding walk

on the nonnegative integers by finding the first step at which the new walk

reaches its minimal position, reflecting the part of the graph to the left of

this step, and putting it behind the other part of the graph.

109

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 8: Graphs of walks on the integers of length 6 starting at 0, the
nonnegative walks are to the left of the corresponding walks that end at 0.
Walks that are a member of both classes correspond to themselves.

110

In case n is odd (say n = 2m− 1) we could give a similar proof, making

a correspondence between the walks on the nonnegative integers of length

n starting at 0, and the walks on the integers of length n starting at 0 and

ending at 1. Alternatively, we can derive the odd case from the even case,

by observing that each walk of length 2m − 1 on the nonnegative integers

starting at 0, can always be extended in exactly two ways to give such a walk

of length 2m, and moreover 2

(
2m− 1

m

)
=

(
2m

m

)
.

Theorem 3.7.9.

There is a Kurtz test that captures every sequence with at least as many

zeroes as ones in every initial segment.

Proof. Let An be the set of strings of length n such that every initial segment

has at least as many zeroes as ones, as in the above Lemma. Note that

2−2n

(
2n

n

)
=

(2n) · (2n− 1) · · · · · 2 · 1
(2n) · (2n− 2) · · · · · 2 · (2n) · (2n− 2) · · · · · 2 =

n∏

i=1

2i− 1

2i
.

This gives

(2n+ 1)

[
2−2n

(
2n

n

)]2

=

n∏

i=1

(2i− 1)(2i+ 1)

(2i)2
< 1,

therefore (
2n

n

)

22n
<

1√
2n+ 1

and by Lemma 3.7.8

µ (JA2nK) < 1√
2n+ 1

.

Hence, a suitable subsequence of (JA2nK) gives a Kurtz test that captures

exactly all the sequences with at least as many zeroes as ones in every initial

segment.

111

Chapter 4

Separating randomness notions

We have now introduced a fair variety of randomness notions and we have

also discussed all known implications between them. We have arrived at

a hierarchy of randomness notions. Still, there could be more implications

that we haven’t seen yet, collapsing different randomness notions into one.

To prove that this does not happen, one needs to construct sequences that

are random for one notion, but not for the other. This is called separating

the notions. By separating notions we also get to understand the particular

behaviour of each notion and the differences between the notions.

We will focus on the variations of computable randomness, lying in be-

tween Schnorr randomness and Martin-Löf randomness. The results from

the previous chapter about these notions are summarized in Figure 9.

We will see that no additional implications hold between these notions,

with one possible exception: it could be the case that partial injection ran-

domness implies Kolmogorov-Loveland randomness, or that Kolmogorov-

Loveland randomness implies Martin-Löf randomness, but not both at the

same time.

We can separate notions by a direct construction or less directly, for

112

Martin-Löf
randomness

Kolmogorov
Loveland

randomness

partial
injection

randomness

partial
permutation
randomness

partial
computable
randomness

total
injection

randomness

total
permutation
randomness

=

computable
randomness

Schnorr
randomness

Stronger randomness notions
Stronger tests to find regularities

Weaker randomness notions
Weaker tests to find regularities

Figure 9: All known implications involving variations of computable random-
ness.

113

example by exposing different behaviour for the Kolmogorov complexity of

initial segments of random sequences for the respective notions. Direct con-

structions are appealing because they construct concrete counterexample se-

quences. The hands-on constructions give a good insight into why different

definitions behave differently. On the other hand, studying Kolmogorov com-

plexity reveals properties of randomness notions that are interesting in their

own right. This approach can also be preferable in situations where direct

constructions would just get too messy and complicated.

I will focus on direct constructions. In Section 4.1, I will repeat the well-

known construction of a sequence that is computably random but not partial

computably random. This is a build-up to my own construction of a sequence

that is partial computably random but not total injection random in Section

4.2. In Section 4.3, I briefly mention some other related constructions. Fi-

nally, in Section 4.4, I present separations obtained by studying Kolmogorov

complexity.

4.1 A sequence that is total computably ran-

dom, but not partial computably random

Theorem 4.1.1.

There exists a sequence that is total computably random, but not partial

computably random.

We give a proof along the lines of [48, Theorem 7.5.7].

Proof. To construct a sequence Z that is total computably random, we need

to diagonalize against all total computable betting strategies. Since we can-

not effectively enumerate all total computable betting strategies, we will

114

enumerate all partial computable betting strategies, but ignore the partial

ones when constructing the sequence Z. Also, in the sequence Z we will

encode exactly which martingales in the enumeration are total. We can do

this step-by-step in a non-circular way, such that a partial computable mar-

tingale can read the encoded information and use this to correctly predict

certain bits of Z.

Without loss of generality we only need to consider betting strategies with

initial capital 1. Let B0, B1, B2, . . . be an effective enumeration of all partial

computable martingales 2<ω → Q with initial capital 1. This enumeration

needs to be effective in the sense that Bk(σ) must be uniformly computable

from k ∈ N and σ ∈ 2<ω. Such an enumeration can be obtained from

an effective enumeration of all partial computable functions, letting these

functions only produce outputs as long as these outputs don’t contradict the

function being a martingale of the required form.

We will construct Z as a concatenation of strings σi and digits αi, to be

defined later. The string σi will encode whether the martingale Bi is total.

Using that information, a partial betting strategy will be able to predict the

following digit αi with certainty. The length of σi will be i+ 1. Define

z0 = λ,

z2i+1 = z2iσi,

z2i+2 = z2i+1αi,

for every i ∈ N, and

Z = lim
i→∞

zi.

115

Furthermore, define

ni = |z2i+1|.

We will only start diagonalizing against the martingale Bk from position nk

in the sequence onwards. Like this, at any position we only need to take into

account finitely many martingales, which we call the active martingales at

that position. The totality of the martingale Bi is be encoded before position

ni in Z, i.e. at a point where the we only need to worry about martingales

B0, . . . , Bi−1.

Z = σ0

Encodes totality
of B0

n0

α0 σ1

L = V0 + 1
makes little profit

Encodes totality
of B1

n1

α1 σ2

L = V0 + 1

2
V1 + 1

2

makes little profit

Encodes totality
of B2

n2

α2 σ3

L = V0 + 1

2
V1 + 1

4
V2 + 1

4

makes little profit

Encodes totality
of B3

n3

α3

Figure 10: Illustration to the construction of a sequence Z which is total
computably random but not partial computably random.

Let

Vk(σ) =

1 if |σ| < nk

Bk(σ)
Bk(σ↾nk

)
if |σ| ≥ nk and Bk is total

0 if |σ| ≥ nk and Bk is partial

and define

L =
∑

k∈N

2−kVk.

Then L is a supermartingale. If any total martingale Bk succeeds on a

sequence Z, then also Vk and L will succeed on Z. So to make Z total

computably random, it is sufficient to make sure that L doesn’t succeed on

Z.

116

Now we define the strings σi and the digits αi inductively as follows:

• Given z2i, there are at least 2 extensions of z2i of length i + 1 such

that L multiplies its capital by at most 1 + 2−i on these extensions.

(Otherwise, the expected capital after betting on such an extension

would be more than a factor

2i+1 − 1

2i+1
(1 + 2−i) = 1 + 2−i − 2−i−1 − 2−2i−1 ≥ 1

of the original capital, a contradiction with Lemma 3.4.5.) Let ρ0 and

ρ1 be the first two such extensions (in lexicographical order). Define

σi =

ρ0 if Bk is total,

ρ1 otherwise.

• Given z2i+1, we choose the next digit such that L makes no profit on

it:

αi =

0 if L(z2i+10) ≤ L(z2i+1),

1 otherwise.

In the limit, the capital of the supermartingale L when betting on Z is

bounded by a factor
∏

i∈N

1 + 2−i

of the original capital. Indeed, this product is finite. Since

1 + x <
∑

i∈N

xi

i!
= ex

117

for any positive real number x, we have

k∏

i=0

1 + 2−i <

k∏

i=0

e2
−i

= e
Pk

i=0 2−i

< e2

for any k ∈ N. (If one wants to avoid using analysis in this proof, one can

change the definition of σi, thereby replacing the sequence (1 + 2−i) with a

computable sequence (ai) that converges more quickly to 1 and for which

the convergence of
∏

i∈N
ai can be proven with more elementary means. For

example, one can define ai inductively, ensuring that
∏k

i=0 ai is less than

some fixed bound at every step.) Consequently, L does not succeed on Z.

Therefore Z is computably random.

It remains to prove that Z is not partial computably random. Consider

the following partial computable betting strategy. Read the first two digits of

the sequence, i.e. the value of σ0, without betting anything. We can compute

if this is the first or the second string in lexicographical order such that L

multiplies its capital by at most 1 + 1 on this string, since L is computable

on strings of length up to n0. Accordingly, assume that B0 is total or partial.

Using this assumption, try to compute L on strings of length up to n1. If

the assumption is correct, we will succeed in this computation. Hence, we

can bet our whole capital on the value of α0 and double our money with

certainty. Moreover, we can read the following three digits of the sequence,

i.e. the value of σ1, figure out if this is the first or the second extension such

that L multiplies its capital by at most 1+ 1
2
, and assume that B1 is total or

partial accordingly. And so on. If this strategy is betting on the sequence Z,

then it will succeed, as all assumptions will be correct, and the capital will be

doubled on every digit αi. Therefore, Z is not partial computably random,

as required. Note that strategy is certainly only partial computable, since

118

other sequences do not encode totality of martingales correctly, and hence

the strategy when betting on such a sequence might be deluded into trying

to compute undefined values of a partial computable martingale.

4.2 A sequence that is partial computably

random, but not total injection random

Having proven Theorem 4.1.1 in detail, I will allow myself to be less com-

prehensive in the proof of the following theorem, many aspects of which are

analogous to the above proof.

Theorem 4.2.1.

There is a sequence that is partial computably random but not total in-

jection random.

Proof. To construct a partial computably random sequence, this time we

need to diagonalize against partial computable martingales as well as total

computable martingales. As before, we will only start taking the martingale

Bk into account from some position nk onwards. However, in this proof, the

sequence (nk) will not be computable. It will be defined inductively later on.

For now, let (nk) be any ascending sequence of natural numbers.

To diagonalize against all total computable martingales, we define:

V n
k (σ) =

1 if |σ| ≤ n

Bk(σ)
Bk(σ ↾n)

if |σ| > n, Bk(σ)↓ and Bk(σ↾n) > 0

0 otherwise

119

and

L(nk) =
∑

k∈N

2−kV nk

k .

L(nk) is a supermartingale with the property that if any Bk succeeds on some

sequence Y , then L succeeds on Y as well. Contrary to the previous proof,

we will not encode any information on the totality of martingales into the

sequence Z that we are constructing. (Indeed, this time we need a total

betting strategy to succeed on Z, and in the previous proof it was exactly

the encoded information that forced the successful betting strategy to be

partial.) We simply take Z(nk) to be the left-most non-ascending path on L

considered as a tree, i.e. if Z(nk)↾n is defined, then we take

Z(nk)(n) =

0 if L(Z↾n0) ≤ L(Z↾n)

1 otherwise.

In the second case, as L is a supermartingale, we have L(Z(nk)↾n1) ≤ L(Z(nk)↾n).

Hence lim supn→∞ L(nk)(Z(nk)↾n) ≤ L(nk)(λ) and L(nk) fails on Z(nk). Conse-

quently, any sequence Z(nk) is partial computably random.

We claim that for a suitable choice of (nk), the partial computably random

sequence Z(nk) is not total injection random. As the sequence (nk) will not

be computable, the betting strategy will have to guess the values of (nk).

Hence we introduce the following notation:

L
〈n0,...,ni−1〉
i =

i−1∑

k=0

2−kV nk

k

for any i-tuple of increasing natural numbers n0, . . . , ni−1.

120

Also, all computations in our strategy need to halt, so we need to approx-

imate as follows:

V n
k [s](σ) =

1 if |σ| ≤ n

Bk(σ)
Bk(σ ↾n)

if |σ| > n, Bk[s](σ)↓, and Bk(σ↾n) > 0

0 otherwise,

and

L
〈n0,...,ni−1〉
i [s] =

i−1∑

k=0

2−kV nk

k [s].

So L
〈n0,...,ni−1〉
i [s] sums only the first i martingales, computed up to stage s,

and it activates the martingalesB0, . . . , Bi−1 at the given positions n0, . . . , ni−1

respectively.

We let Z
〈n0,...,ni−1〉
i be the left-most non-ascending path of L

〈n0,...,ni−1〉
i , and

Z
〈n0,...,ni−1〉
i [s] the left-most non-ascending path of L

〈n0,...,ni−1〉
i [s]. Our betting

strategy will use these Z
〈n0,...,ni−1〉
i [s] (which are computable) as guesses for

the actual Z.

More specifically, the total injection betting strategy will associate with

every position a guess as to how many of the active martingales are defined

along the sequence. We will approximate the martingales until this guess

seems to be true, at least up to that position. The injection will then pick

this position to be the subject of the next bet of the betting strategy. More-

over we can make sure that, for any fixed number of active martingales,

we can bet correctly at sufficiently large positions with correct associated

guesses. However, it is not computable exactly how large is sufficient, and

we need to make sure that we don’t activate a new martingale before we

have made enough profit with the previous set of active martingales. This

is why the sequence (ni), which determines how quickly martingales are ac-

tivated, cannot be computable in this construction. This in turn makes it

necessary to include all possible values for ni (for the martingales that we

121

presume to be active) into our guesses, in order to be able to approximate

these martingales correctly.

Our total injection betting strategy works as follows.

The ordered list of positions that an injection betting strategy bets upon,

may be given by a computable enumeration of an infinite subset of N. We

achieve this by uniformly assigning a computation to each k ∈ N, and by

betting on position k at the stage that the computation corresponding to k

terminates, if ever. In particular, we will bet on k = 〈i, 〈n0, . . . , ni−1〉, l,m〉
at the first stage s that

∣∣∣
{
j ∈ {0, . . . , i− 1} : Bj[s]

(
Z

〈n0,...,ni−1〉
i [s]↾k+1

)
↓
}∣∣∣ = l.

At this point, and if i has a value that we are still interested in, we will guess

that all computations involved in defining Z
〈n0,...,ni−1〉
i ↾k that converge, have

halted by stage s; hence we will bet on Z(nk)(k) = Z
〈n0,...,ni−1〉
i [s](k). Under

certain conditions, this guess is guaranteed to be correct. In particular the

following lemma holds:

Lemma 4.2.2.

Suppose that

(a) l =
∣∣∣
{
j ∈ {0, . . . , i− 1} : Bj is defined along Z

〈n0,...,ni−1〉
i

}∣∣∣, and

(b) m is sufficiently large.

Let k = 〈i, 〈n0, . . . , ni−1〉, l,m〉. Then there is a stage s such that

∣∣∣
{
j ∈ {0, . . . , i− 1} : Bj [s]

(
Z

〈n0,...,ni−1〉
i [s]↾k+1

)
↓
}∣∣∣ = l. (23)

Moreover, at this stage we have

Z
〈n0,...,ni−1〉
i (k) = Z

〈n0,...,ni−1〉
i [s](k).

122

Proof. We abbreviate Zi = Z
〈n0,...,ni−1〉
i .

There are only finitely many n ∈ N such that Bj(Zi↾n) ↓ for some j ∈
{0, . . . , i − 1} such that Bj is not defined along Zi. Let N be the maximal

such n. Let s0 be the first stage such that

Bj [s](Zi↾n)↓ if and only if Bj(Zi↾n)↓

for all j ∈ {0, . . . , i− 1} and all n ≤ N + 1.

Given (a), (23) will hold for s large enough. But note that the larger we

take m, the larger k is, and the longer it will take for (23) to hold. So we

can take m large enough to have k > N and s ≥ s0.

By choice of N , s0 and m, we have

Zi↾N = Zi[s]↾N ,

and Bj(Zi↾N)↑ for all j ∈ {0, . . . , i−1} such that Bj is not defined along Zi.

Hence, when (23) holds, we must have

{
j ∈ {0, . . . , i− 1} : Bj[s]

(
Zi[s]↾k+1

)
↓
}

⊆ {j ∈ {0, . . . , i− 1} : Bj is defined along Zi}

and by (a) this is actually an equality. This means that all computations

involved in defining Zi↾k+1 have halted by stage s, so the guess

Zi(k) = Zi[s](k)

is correct.

We are now ready to define the sequence (nk) and the total injection

123

strategy that will succeed on Z(nk). We have already defined the computable

injection above. Now we partition the initial capital; to every natural number

j = 〈i, 〈n0, . . . , ni−1〉, l〉 we assign a fraction 2−j−1 of our starting capital.

When we are asked to bet on k = 〈i, 〈n0, . . . , ni−1〉, l,m〉, we will only use

the capital assigned to the number 〈i, 〈n0, . . . , ni−1〉, l〉. In particular, if we

are asked to bet on this position k at stage s, then we will put 3
4

of this

capital on the outcome Z
〈n0,...,ni−1〉
i [s](k) and 1

4
of this capital on the other

outcome. Once the capital assigned to some 〈i, 〈n0, . . . , ni−1〉, l〉 exceeds 1,

we start betting evenly on positions with this value of i, and we say that the

substrategy for i has succeeded.

Remark 4.2.3. The substrategy for i is certain to succeed when betting on

Z
〈n0,...,ni−1〉
i . Indeed, by Lemma 4.2.2, when l has the correct value and m is

big enough, then at some point we will bet on position k = 〈i, 〈n0, . . . , ni−1〉, l,m〉
and this bet is guaranteed to be successful, i.e. to increase the capital as-

signed to 〈i, 〈n0, . . . , ni−1〉, l〉 with a factor 3
2
. So the capital assigned to

〈i, 〈n0, . . . , ni−1〉, l〉 will exceed 1 if we go on for long enough.

Remark 4.2.4. If the substrategy for i succeeds when betting on Z
〈n0,...,ni−1〉
i ,

and the highest position that the strategy has bet on before succeeding is posi-

tion k, then the substrategy will run exactly the same, and hence also succeed

at the same point, on any sequence Y with Y ↾k+1 = Z↾k+1. In particular, if

k < ni < ni+1 < ni+2 < . . . ,

then the substrategy for i will run exactly the same on Z
〈n0,...,nj−1〉
j for any

j ≥ i, and also on Z(nk).

124

We now recursively define nk by letting n0 = 0 and taking

ni = 1 +

highest position that the strategy has bet on

after the substrategies for 0, . . . , i− 1 have suc-

ceeded when betting on Z
〈n0,...,ni−1〉
i

 .

By Remark 4.2.3, these substrategies indeed all succeed, so the sequence is

well-defined. Moreover, by Remark 4.2.4, the substrategies all succeed on

Z(nk), as well. So the total injection betting strategy succeeds on Z(nk), as

there are infinitely many substrategies that, with disjoint parts of the initial

capital, all generate one unit of money. Therefore Z(nk) is a sequence that is

partial computably random, but not total injection random, concluding the

proof of Theorem 4.2.1.

4.3 Other constructions

Nies, Stephan and Terwijn

Nies, Stephan and Terwijn [49] proved that sequences as constructed in The-

orem 4.1.1 (computable random but not partial computably random) can be

found exactly in the high Turing degrees. A similar fact holds for sequences

that are Schnorr random but not computably random.

Theorem 4.3.1 (Nies, Stephan and Terwijn [49], see also [16, 8.11.6]

and [48, 3.5.13, 7.5.9 and 7.5.10]).

The following are equivalent for a Turing degree A:

• A is a high Turing degree;

• A contains a sequence that is computably random but not partial

computably random;

125

• A contains a sequence that is Schnorr random but not computably

random.

One direction of this result follows from the fact that in non-high Turing

degrees, the whole hierarchy of randomness notions between Schnorr ran-

domness and Martin-Löf randomness collapses. This means: every non-high

Schnorr random is also Martin-Löf random. Indeed, if a Turing degree A is

not high, then for every total function f ∈ A, there is a computable function

that is not dominated by f . In particular, if some sequence Z ∈ A fails a

Martin-Löf test (Ui), then the function f mapping i ∈ N to the first stage

s such that Z ∈ Ui[s] is total and computable in A. Hence there is a com-

putable function g that is not dominated by f , i.e. g(i) > f(i) for infinitely

many values of i. Now (Ui[g(i)]) is a Schnorr test (even a Kurtz test) such

that Z ∈ Ui[g(i)] for infinitely many values of i. By Remark 3.2.5, Z is not

Schnorr random, as required.

Kastermans and Lempp

The main open problem about separating randomness notions, is the ques-

tion whether Martin-Löf randomness is equivalent to or strictly stronger than

Kolmogorov-Loveland randomness. The result that comes closest to a solu-

tion to this question was obtained by Kastermans and Lempp [24]. They

constructed a sequence that is partial injection random, but not Martin-Löf

random.

Theorem 4.3.2 (Kastermans and Lempp [24], see also [16, 8.11.6]).

There is a sequence that is partial injection random, but not Martin-Löf

random.

Before this result was published, Miller and Nies [44] suggested that a sep-

126

aration of Martin-Löf randomness from permutation or injection randomness

might provide a stepping stone towards a separation of Martin-Löf random-

ness and Kolmogorov-Loveland randomness. Kastermans and Lempp have

now obtained the weaker separation, but so far it has not helped towards

solving the bigger question.

4.4 Separations by initial segment complex-

ity

A less direct but very fruitful way to compare the strength of different ran-

domness notions, is to investigate how low the initial segments complexities

of random sequences can get. As we have seen in Theorems 3.3.1 and 3.3.3,

for Martin-Löf randomness there is a very clear distinction between the ini-

tial segment complexities of random and nonrandom sequences. For other

notions of randomness however, this is usually not the case.

Random sequences with low complexity

Computable randomness

In the proof of Theorem 4.1.1 we constructed a computably random sequence.

The only incomputable step in this construction was the question “is Bk

total or partial?”. In particular, if we are given n, then we can compute

the initial segment of length n of the computably random sequence with

just one bit of information for every martingale that is active at position n;

that bit encoding the information “is Bk total?” for every active martingale

Bk. In the proof, the number of active martingales grows at a fixed rate,

determined by the sequence (ni). However, we can replace this function

127

by any computable function that grows more quickly, thereby making the

number of active martingales grow as slowly as any computable order. This

gives the following:

Theorem 4.4.1.

For any computable order h, there exists a computably random sequence

Z such that

C(Z↾n|n) < h(n) +O(1).

Partial computable randomness

In the proof of Theorem 4.2.1 we constructed a partial computably random

sequence by a similar construction. Here we not only need to know whether

an active martingale is total or partial, but in case it is partial, we also need to

know at what point in the construction that we come across this partiality. In

particular: to compute (given n) the initial segment of length n of the partial

computably random sequence, we need to know for every active martingale

at exactly which position in {0, 1, . . . , n} it becomes undefined along the

sequence, if any. So we need log(n) bits of information for every active

martingale. This gives the following:

Theorem 4.4.2.

For any computable order h, there exists a partial computably random

sequence Z such that

C(Z↾n|n) < h(n) log(n) +O(1).

128

Total injection randomness

Using a similar argument, Bienvenu, Hölzl, Kräling and Merkle [3] con-

structed a total injection random sequence with low initial segment com-

plexity.

Theorem 4.4.3 (Bienvenu, Hölzl, Kräling and Merkle [3]).

For any computable order h, there exists a total injection random se-

quence Z such that

C(Z↾n|n) < h(n) + log(n) +O(1).

Partial permutation randomness

The construction becomes considerably more complicated when the martin-

gales involved are both partial and nonmonotonic. As we will see later, there

are no partial permutation random sequences where every initial segment

has a low complexity. However, Bienvenu, Hölzl, Kräling and Merkle [3] still

managed to construct a partial permutation random sequence with infinitely

many initial segments of low complexity.

Theorem 4.4.4 (Bienvenu, Hölzl, Kräling and Merkle [3]).

For any computable order h and any infinite computable set S ⊆ N,

there exists a partial permutation random sequence Z such that

C(Z↾n|n) < h(n)

for infinitely many n ∈ S.

129

Lower bounds for the complexity of random sequences

Computable randomness

In Theorem 4.4.1 we already discovered that computably random sequences

can have very low initial segment complexities. Indeed, suppose we require

slightly lower initial segment complexities by removing the computable order

from the condition of Theorem 4.4.1. Then the condition suddenly only holds

for just computable sequences.

Theorem 4.4.5 (Loveland [37], see also [16, 3.4.1]).

Z is computable if and only if

C(Z↾n|n) < O(1).

This leads to the following question:

Question 4.4.6.

Does there exist a non-trivial lower bound for the initial segment com-

plexities of computably random sequences.

Non-trivial here means that some incomputable sequences should have

complexities that are below the bound. Theorem 4.4.1 suggests that such a

bound will involve incomputable functions that grow more slowly than any

computable order.

Partial computable randomness

If we remove the computable order from the condition in Theorem 4.4.2, then

no more partial computably random sequences satisfy the condition. At least

in this case, the lower bound is non-trivial.

130

Theorem 4.4.7 (Merkle [42]).

If

C(Z↾n|n) < O(log(n)),

then Z is not partial computably random.

Note that we might as well use unconditional complexity C(Z↾n) in this

Theorem, since there is only a O(log(n)) difference between C(Z↾n|n) and

C(Z↾n) anyway.

Total injection randomness

For total injection randomness we have a more complicated lower bound.

Theorem 4.4.8 (Bienvenu, Hölzl, Kräling and Merkle [3]).

If (nk) is a computable sequence of natural numbers such that nk+1 ≥ 2nk

for all k, such that

C(Z↾nk
|k) < log(nk) + 3 log(log(nk)),

then Z is not total injection random.

Partial permutation randomness

Andrei Muchnik proved that all partial permutation random sequences have

initial segment complexities that are relatively close to their lengths. Com-

paring this with Theorem 4.4.2, we see that partial permutation randomness

is significantly stronger than (monotone) partial computable randomness.

This contrasts with the total case, where monotone and permutation ran-

domness are equivalent.

131

Theorem 4.4.9 (Andrei Muchnik [46, 9.1]).

If there is a computable order h such that

K(Z↾n) < n− h(n) −O(1),

then Z is not partial permutation random.

The article [46] in fact only states this theorem for partial injection ran-

domness, a weaker result, but the proof actually provides a permutation

betting strategy that proves the stronger statement.

Separations using complexity

We now know fairly well how low the initial segment complexity can be for

different notions of computable randomness. Comparing them, we get the

following conclusions, all taken from [3].

Theorem 4.4.10.

There exists a sequence that is partial computably random but not partial

permutation random.

Proof. By Theorem 4.4.2 there exists a partial computably random sequence

Z with

C(Z↾n|n) < log(n) log(n) +O(1).

Therefore

K(Z↾n) < C(Z↾n|n) + 2 log(n) +O(1) ≤ log(n) log(n) + 2 log(n) +O(1)

so by Theorem 4.4.9 with h being any computable order that grows more

slowly than n − log(n) log(n) − 2 log(n), we know that Z is not partial per-

mutation random.

132

Theorem 4.4.11.

There exists a sequence that is total injection random but not partial

computably random.

Proof. By taking h(n) = log(n) in Theorem 4.4.3, there exists a total injec-

tion random sequence Z with

C(Z↾n|n) < 2 log(n) +O(1).

Therefore by Theorem 4.4.7 we know that Z is not partial computably ran-

dom.

Theorem 4.4.12.

There exists a sequence that is partial permutation random but not total

injection random.

Proof. Pick a computable sequence (nk) according to the conditions of Theo-

rem 4.4.8 with K(k) ≤ log(nk) for all k. Let S = {nk : k ∈ N}. By Theorem

4.4.4 there exists a partial permutation random sequence Z with

C(Z↾n|n) < log(log(n))

for infinitely many n ∈ S. Consequently, for infinitely many k ∈ N we have

C(Z↾nk
|k) ≤ C(Z↾nk

) +O(1)

≤ C(Z↾nk
|nk) +K(nk) +O(1)

≤ C(Z↾nk
|nk) +K(k) +O(1)

≤ log(log(nk)) + log(nk) +O(1).

By Theorem 4.4.8, Z is not total injection random.

133

The last theorem implies my Theorem 4.2.1 and was also published [3]

before my result. Still, my direct construction has its own appeal. More-

over, the techniques used in my construction are more likely to be of help

with the open problem of Kolmogorov-Loveland randomness versus Martin-

Löf randomness, as no useful bounds for the initial segment complexity of

Kolmogorov-Loveland random sequences are known.

134

135

Chapter 5

Axioms about complexity

Chaitin was the first to realize that stating that certain strings are incom-

pressible (“C(σ) > |σ|”) provides statements that are true but not provable

in axiomatic theories like Peano Arithmetic (PA). This provides an elegant

proof of Gödel’s first incompleteness theorem [21] using Kolmogorov com-

plexity.

As we have seen, requiring that initial segments of a sequence have a high

complexity also gives characterizations of certain randomness notions. In par-

ticular Martin-Löf randomness has a simple definition in this way (Theorem

3.3.1). This raises the question of the proof-theoretic power of the theory

which expresses that a certain sequence is Martin-Löf random.

All axioms of the form “C(σ) > n”, formalized in PA or other appropriate

axiomatic theories, are Π0
1 sentences. (One could also call them universal sen-

tences, since they only have universal quantifiers, but we avoid this because

we use the term universal already in a different sense in universal machine.)

We will concentrate on this class of Π0
1 sentences in our investigations. Every

Π0
1 sentence can be interpreted as saying that a certain computation does

not halt. Conversely, the non-halting of any computation can be formalized

136

as a Π0
1 sentence. Therefore, proving all true (in the standard model) Π0

1

sentences is in a sense the proof-theoretic equivalent of solving the halting

problem. We will show that the theory of all true statements of the form

“C(σ) > n” proves all true Π0
1 sentences, thereby obtaining a proof-theoretic

version of the Turing completeness of C (Theorem 2.4.2). The results will get

more subtle when we consider axiomatic theories that express that a certain

sequence is Martin-Löf random.

This chapter originates as joint work with Laurent Bienvenu, Andrei Ro-

mashchenko, Alexander Shen and Antoine Taveneaux, which is due to be

published in the Annals of Pure and Applied Logic [4]. This chapter focusses

only on those aspects of the article where randomness is directly involved,

which was also my main involvement in the research.

I suppose in this chapter that the reader is familiar with the basics of

proof theory. In particular, a good intuition about formalizing mathematical

statements into PA and about provability in PA is required. For background

reading, see e.g. Mendelson’s book [40].

5.1 Chaitin’s result

We will now consider the proof-theoretic power of statements about Kol-

mogorov complexity in axiomatic theories like PA. Remember that Kol-

mogorov complexity is not computable. This result has a counterpart in

proof theory: Gregory Chaitin observed in 1974 that statements of the form

“K(σ) > n” can only be provable for a finite number of values of n.

Exactly what axioms we use, is not essential here. We could work in PA

or in stronger theories. Essential are the following properties of PA:

137

• PA can prove all true statements that use only bounded quantifiers,

• “φe,s(x) = y” is definable in PA as a relation in e, s, x and y, using

only bounded quantifiers.

Consequently,

“φe(x) = y” = “∃s : φe,s(x) = y”

and

“φe(x)↓” = “∃y : φe(x) = y”

are Σ0
1 formulas which can be proven when they are true.

“φe(x)↑” = “¬φe(x)↓”

is a Π0
1 formula.

“K(σ) < n” = “∃τ : (|τ | < n and U(τ) = σ)”

is a Σ0
1 formula, so all upper bounds for the complexity of any string are

provable. Consequently,

“K(σ) > n”

is a Π0
1 formula. The same holds for plain complexity C instead of prefix-free

complexity.

We can now go back to Chaitin’s theorem.

Theorem 5.1.1.

There is a bound N ∈ N such that any provable sentence of the form

“K(σ) > n” has n < N .

138

Chaitin proved this theorem in 1974 [10, Theorem 4.1], but the idea goes

back to 1971 [9].

Proof. Suppose for contradiction that for all n ∈ N there is a provable sen-

tence “K(σ) > n”. (Note that if “K(σ) > n” is provable and n > m, then

also “K(σ) > m” is provable.) Let “K(σn) > n” be the first such sentence in

a fixed enumeration of all theorems. Using this enumeration, we can compute

σn from n, so K(σn) < O(logn). For large n, this is in contradiction with

K(σn) > n.

Note that this can be seen as a proof of Gödel’s first incompleteness

theorem [21] (“there are true statements that are not provable in PA”) using

Kolmogorov complexity.

5.2 Machines that are provably universal

We can give an alternative proof of Chaitin’s result, using a lemma about

the provability of equivalence of Turing machines.

Lemma 5.2.1.

There exists a machine M such that for any other machine N , it is not

provable that M 6≡ N .

Remark 5.2.2. Such a machine M cannot halt on any input, but this is

not provable, even though the existence of such a machine is provable.

Proof of Lemma 5.2.1. Suppose for contradiction that for any e there exists

and n such that “φe 6= φn” is provable. Let f(e) be the first n for which

“φe 6= φn” appears in a fixed enumeration of all theorems. Then f is a total

139

computable function such that φe 6= φf(e) for all e, contradicting the Fixed

Point Theorem (Lemma 2.3.1).

Alternative proof of Theorem 5.1.1. LetM be a machine such as in the Lemma.

Let c be the coding constant for M , i.e.

K(σ) < KM(σ) + c (24)

for all strings σ. Suppose for contradiction that “K(σ) > n” is provable for

some σ and some n > c. Then also

“M(τ) 6= σ”

is provable for all τ of length less than n − c > 0. So it is provable that M

is not equivalent to e.g. the machine that maps the empty string to σ and

diverges on all other inputs. This contradicts the choice of M .

There is however one hidden problem with this proof: (24) needs to be

provable. In other words, our axiomatic theory needs to be able to prove

information about the coding constants of our universal machine. This is not

guaranteed. There exist universal machines that are not provably universal.

Theorem 5.2.3.

There exists a machine M which is equivalent to the standard universal

machine U (constructed in Section 2.4), but for which it is not provable

that it halts on infinitely many inputs.

Proof. Let “∀n : ψ(n)” be some Π0
1 sentence which is true but not provable

140

(such as the consistency of our theory). Define

M(σ) =

U(σ) if ∀n < |σ| : ψ(n)

↑ otherwise

.

From “∃N : ¬ψ(N)” we would be able to prove

“∃N∀σ : (|σ| > N =⇒ M(σ)↑)”,

and hence that M only halts on finitely many inputs. By taking the con-

trapositive: if it were provable that M halts on infinitely many inputs, then

“∀n : ψ(n)” would be provable, contradicting our choice of ψ.

From now on, we will suppose that we don’t have such a weird universal

machine. We assume that PA (or whichever base theory is used) has some

understanding of the workings of the universal machine, and in particular

that PA can prove inequalities like (24). This is fine for the standard universal

machine U.

There is a similar issue with the computational process that we use. Any

of the usual methods (such as Turing machines) will do fine. It is however

possible to consider a machines that in parallel to executing their program,

try to prove the inconsistency of PA, and will go into an infinite loop if they

find such a proof. We know that these machines will behave exactly like

ordinary Turing machines, but PA does not, since PA cannot prove its own

consistency. PA cannot even prove that any of these machines compute a

total function. We will assume that we are not dealing with such a strange

computational model. We assume that PA can prove basic facts about our

computations, for example that the machine which computes addition actu-

ally computes a total function.

141

5.3 Axioms about strings of high complexity

We now consider the strength of theories consisting of axioms stating that

some strings have high complexity (in addition to the axioms of the base

theory, e.g. PA, which we always implicitly assume). By Chaitin’s result the

true axioms of the form

“C(σ) > n” (25)

where n is larger than the N in Theorem 5.1.1, give a theory that is strictly

stronger than PA. Exactly how strong can this theory get? Since all axioms

(25) are Π0
1 sentences, the theory can at most get as strong as the theory

consisting of all true Π0
1 sentences.

A Π0
1 sentence “∀nφ(n)” states that the computation that tries to find

the least n such that ¬φ(n) never halts. Conversely, the statement that a

particular computation doesn’t halt, is always Π0
1. Hence, proving all true

Π0
1 sentences seems to be the proof-theoretic equivalent of solving the halting

problem in computability theory.

The true axioms of the form “C(σ) > n” allow PA to prove exact values

of the complexity function C. Indeed, the negations “C(σ) ≤ n” are Σ0
1

formulas and hence automatically provable when true. Since Kolmogorov

complexity is Turing complete (Theorem 2.4.2), we can expect that the true

axioms of the form “C(σ) > n” will be strong enough to prove all true Π0
1

sentences. This is indeed the case. In fact, a much weaker condition is

sufficient. It is possible to prove all true Π0
1 sentences with an axiom

“C(σn) > n− c”

for just one carefully chosen string σn of length n, for infinitely many n.

142

Theorem 5.3.1.

Fix some constant c ≥ 0. For each n, let σn be the lexicographically first

string of length n such that C(σn) ≥ n− c. Any theory T consisting of

infinitely many axioms of the form

“C(σn) > n− c”

can prove all true Π0
1 sentences.

The proof is very similar to the proof of Theorem 2.4.2.

Proof. Let “∀n : ψ(n)” be a Π0
1 sentence. Consider the machine M that for

successive values of n checks ψ(n), and halts if it finds an n such that ¬ψ(n).

Under the assumptions of Section 5.2, PA can prove that

“∀n : ψ(n)”

and

“M does not halt”

are equivalent. So it is sufficient to prove that the theory T can prove the

non-termination of every non-halting program.

Remember from Chapter 2 that Cs is the time-bounded Kolmogorov com-

plexity. Cs(σ) is the length of the shortest description that makes the univer-

sal machine output σ in less than s steps. The functions Cs are computable

and approximate C from above. So we can define sn as the least s such that

Cs(τ) < n− c for every τ of length n that is lexicographically before σn. We

prove that from a program P , we can compute a number n such that the

computation P either terminates in less than sn steps, or does not terminate

at all.

143

Given a terminating program P and a number n, let s(P) be the number

of steps that P takes to terminate. Let σ be the lexicographically first string

of length n such that Cs(P)(σ) ≥ n − c. If P does not halt within sn steps,

then we know that σ = σn. On the other hand, for every P that terminates

we get some string σ of length n with

C(σ) < C(P, n) +O(1)

< K(n) + C(P) +O(1)

< C(P) +O(logn).

If n is large enough compared to C(P), this gives C(σ) < n − c. For such

an n, we know that σ is different from σn, so P must have halted within sn

steps. Consequently, if a program P terminates at all, then it must do so in

less than sn steps.

This argument can be formalized in PA as well. Having “C(σn) ≥ |σn|−c”
as an axiom, it is provable that σn is the first string σ of length n with

C(σ) ≥ |σ| − c, as we can find shorter descriptions for all preceding strings

of length n. Then, given n, it is provable that the value of sn satisfies its

definition. Finally, given P and taking n suitably large, it is provable (doing

the above proof inside PA) that P either terminates in sn steps or does not

terminate at all, as required.

The same proof works for prefix-free complexity instead of plain complex-

ity. Therefore we can restate the theorem with K instead of C.

Theorem 5.3.2.

Fix some constant c ≥ 0. For each n, let σn be the lexicographically first

string of length n such that K(σn) ≥ n− c. Any theory T consisting of

144

infinitely many axioms of the form

“K(σn) > n− c”

can prove all true Π0
1 sentences.

Proof. The proof of Theorem 5.3.1 works with plain complexity C replaced

everywhere by prefix-free complexity K.

Can we make all the strings σn for which we include the axioms, initial

segments of the same sequence? Here the answer depends on which complex-

ity we use.

For prefix-free complexity, we have the following result.

Theorem 5.3.3.

Fix some constant c ≥ 0. There exists a sequence Z and an infinite set

A ⊆ N such that the theory consisting of the axioms

“K(Z↾n) ≥ n− c”

for all n ∈ A is consistent and proves all true Π0
1 sentences.

Proof. We order all strings by length and then lexicographically. That is,

σ < τ if and only if |σ| < |τ |, or |σ| = |τ | and σ is lexicographically before τ .

We construct Z as follows: let τ0 be some string with K(τ0) < |τ0| − c.

Inductively, let σn be the first (for the above order) string σ that extends τn

with K(σ) ≥ |σ| − c, and let τn+1 be some string extending σn such that

K(τn+1) < |τn+1| − (n+ 1) − c.

Note that σn must exist, as by Corollary 3.3.3 every string can be extended

145

to a Martin-Löf sequence Y for which

lim
n→∞

(K(Y ↾n) − n) = ∞.

Let Z = lim
n→∞

σn. Consider the axioms

“K(σn) ≥ |σn| − c”

for all n ∈ N. (That is: A = {|σn| : n ∈ N} in the statement of the

theorem.) We claim that this theory can prove all true Π0
1 sentences. The

proof is similar to the proof of Theorem 5.3.1.

As in Theorem 5.3.1, it is sufficient to prove that for every program P

that does not terminate, our theory proves this non-termination.

Define sn to be the first s such that Ks(σ) < |σ| − c for all strings σ that

extend τn and come before σn in our order. We prove that from a program P ,

we can compute a number n such that the computation P either terminates

in less than sn steps, or does not terminate at all.

Given a terminating program P and a number n, let s(P) be the number

of steps that P takes before halting. Let σ be the first string that extends

τn with Ks(P)(σ) ≥ |σ| − c. If P does not halt within sn steps, then we know

that σ = σn. On the other hand, for every P that terminates we get some

string σ extending τn with K(σ) < K(P) +K(τn) + O(1). By definition, τn

has a low complexity. Consequently

K(σ) < K(P) + |τn| − n− c+O(1)

< K(P) + |σ| − n− c+O(1).

146

Given the program P , we can find an n that is large enough such that

K(P) − n +O(1)

is negative. For such an n, we know that σ is different from σn, so P must

have halted within sn steps. Consequently, if a program P terminates at all,

then it must do so in less than sn steps.

As in the proof of Theorem 5.3.1, this reasoning can be formalized in PA.

Having “K(σn) ≥ |σn| − c” as an axiom, it is provable that σn is the first

string extending τn such that K(σn) ≥ |σn|−c. Then, given τn, it is provable

that the value of sn satisfies its definition. Finally, given P and taking τn

for n suitably large, it is provable (doing the above proof inside PA) that P

either terminates in sn steps or does not terminate at all, as required.

Remark that the sequence Z that we constructed in the proof, has ar-

bitrarily large complexity dips in between the initial segments σn with com-

plexity at least |σn|−c. Hence Z is not Martin-Löf random. This is essential

by Theorem 5.4.1. Indeed, even if we choose a Martin-Löf random Z and a

constant c small enough such that K(Z↾n) > n − c is not true for all n, it

still must be true for all but finitely many n. In this case the proof of The-

orem 5.4.1 still works to show that the theory consisting of all true axioms

“K(Z↾n) > n− c” does not prove all true Π0
1 statements.

For plain complexity, the proof of Theorem 5.3.3 does not work. The

reason is that not every string can be extended to a string with high plain

complexity.

Question 5.3.4.

Does there exist a sequence Z and a theory T consisting of infinitely

147

many axioms of the form

“C(Z↾n) > n− c”

such that T is consistent and proves all true Π0
1 sentences?

Note that if there does exists such a sequence Z, then Z must be 2-

random. This makes the question quite different from Theorem 5.3.3, as the

sequence constructed in the proof of the theorem was necessarily non-random,

whereas Question 5.3.4 relates to the properties of random sequences.

Moreover, remark that, although there are no Turing-complete 2-random

sequences, some corresponding theory T might still be Turing complete.

5.4 Axioms expressing Martin-Löf random-

ness

What happens if we add information about the complexity of all initial seg-

ments of an entire sequence to Peano Arithmetic? In the first place, we are

interested in expressing that some sequence Z is Martin-Löf random. This

is equivalent with the fact that there exists some c such that

K(Z↾n) > n− c

for all n. We cannot express this with just one axiom, but we could consider

the theory MLRc(Z) that consists of infinitely many axioms, namely the

axiom

“K(Z↾n) > n− c”

148

for each n. This theory is consistent if and only if Z is indeed Martin-Löf

random with the given constant c.

Our main result about the theories MLRc(Z) is the following.

Theorem 5.4.1.

If MLRc(Z) is consistent, then MLRc(Z) does not prove all true Π0
1

sentences.

Note that this contrasts with the fact that there are Turing-complete

Martin-Löf random sequences, like Ω. Even for Ω however, the consistent

theories MLRc(Ω) do not prove all true Π0
1 statements.

The proof of Theorem 5.4.1 is interesting enough to merit a thorough

introduction.

If Z 6≥T 0′, then the theorem follows immediately from the fact that the

theory MLRc(Z) is not Turing complete.

If Z ≥T 0′, then we use an idea due to Antoine Taveneaux. Note that

the theory MLRc(Z) will be Turing complete, as we can compute Z from

MLRc(Z). The much stronger set of axioms consisting of all true sentences

of the form “K(σ) > |σ| − c” is Turing complete as well, yet not because

we can compute Z from it, but because we are given so much information

about the Kolmogorov complexity function. Our aim is to find a midpoint

in between. We hope to add axioms about the complexities of more strings

than just the initial segments of Z, such that the actual bits of Z become

obscured. But we don’t want too many axioms, to avoid that our theory

becomes Turing complete for different reasons. This would give us a theory

that is stronger than MLRc(Z) in the proof-theoretic sense, but not Turing

complete. This theory doesn’t prove all true Π0
1 statements, just like in the

case Z 6≥T 0′, so certainly the weaker theory MLRc(Z) doesn’t either.

149

Now how do we pick these extra axioms? We will find a Turing degree

A that doesn’t derandomize Z (i.e. Z is still Martin-Löf random relative

to A) and computes a lower bound K̃ for K, which is however (up to an

additive constant) an upper bound for the relativized complexity KA. Then

we add axioms stating that σ has high complexity for all strings σ that still

have high values for the lower bound K̃. In particular, this will include all

initial segments of Z, since A doesn’t derandomize Z. The extended theory

is A-computable. Hence A must be Turing complete if the theory it is to

prove all true Π0
1 statements. However, Z cannot be 2-random and Turing

complete at the same time, a contradiction.

Finally, how do we find such a degree A? PA degrees are perfect for

the job. The complete extensions of Peano arithmetic form a Π0
1 class, so

we can use a low basis theorem to find a PA degree A that is close to being

computable. In our case close to being computable means: not derandomizing

Z. PA degrees can also compute a member of any Π0
1 class. In particular,

our PA degree A will be able to compute a suitable function K̃, as the

requirements for K̃ are Π0
1.

Now we put all of this together into an actual proof.

Proof of Theorem 5.4.1. All false Π0
1 sentences can be computably enumer-

ated. Since “φe(e) ↑” is a Π0
1 statement, the set of all true Π0

1 sentences is

Turing complete. Hence a theory that proves all true Π0
1 statements must

be Turing complete as well. In particular, if Z 6≥T 0′, then MLRc(Z) is not

Turing complete, so does not prove all true Π0
1 statements.

Now consider the other case, Z ≥T 0′. Using the low basis theorem for

randomness ([16, 8.7.2]) we can take a PA degree A such that Z is still

Martin-Löf random relative to A.

150

Consider all total functions f : 2<ω → N such that

f(σ) ≤ K(σ) for all σ ∈ 2<ω (26)

and
∑

σ∈2<ω

2−f(σ) ≤ 1. (27)

These conditions are Π0
1. Moreover, (26) together with the fact that there

is a computable upper bound for K, makes the class of such functions f a

bounded Π0
1 class in Baire space ([16, p73 footnote 11]). Hence the PA degree

A computes a member of this class, say K̃.

Note that (27) makes K̃ an information content measure ([16, 3.7.7])

relative to A. By [16, 3.7.8], there is a constant c such that

KA(σ) − c ≤ K̃(σ)

for all σ ∈ 2<ω. Since Z is Martin-Löf random relative to A, by a relativized

version of Corollary 3.3.3 we have

lim
n→∞

(
KA(Z↾n) − n

)
= ∞.

Hence there exists an N ∈ N such that for all n ≥ N

KA(Z↾n) > n+ c

and thus

K̃(Z↾n) > n.

151

Consider the set

C =
{
σ ∈ 2<ω : K̃(σ) > |σ|

}

and let T be the theory consisting of the axioms

“K(σ) > |σ|”

for all σ ∈ C and

“K(Z↾n) > n− c”

for all n < N .

This theory is consistent, because K̃ is a lower bound forK, so K̃(σ) > |σ|
implies K(σ) > |σ|. The theory T is also stronger (in the proof-theoretic

sense) than MLRc(Z), since Z↾n ∈ C for all n ≥ N . Finally, since K̃ is

A-computable, so are the set C and the theory T .

As in the first paragraph of this proof, A must be Turing-complete if

T is to prove all true Π0
1 sentences. But then Z, which is random relative

to A, is at least 2-random. This contradicts the assumption that Z ≥T 0′.

Hence T can’t prove all true Π0
1 sentences, and neither can the weaker theory

MLRc(Z).

More results about MLRc(Z)

When we increase the constant c, the theory MLRc(Z) becomes weaker. The

next result shows that in the limit for c→ ∞, we get back to PA.

We write MLRc(σ) for the theory consisting of axioms “K(σ↾n) > n− c”
for n ≤ |σ|.

152

Theorem 5.4.2.

Let Z be Martin-Löf random. Let φ be a sentence that is provable in

MLRc(Z) for every c. Then φ is also provable in PA.

Note that if c is too small, then MLRc(Z) is inconsistent and φ is trivially

provable in MLRc(Z).

Proof. Suppose that MLRc(Z) proves φ for every natural number c. We will

prove that either Z is not Martin-Löf random, or that φ is provable in PA.

Consider the sets

Uc = {Z : MLRc(Z) proves φ}

for every c. These sets are Σ0
1 classes uniformly in c, as every proof involves

only finitely many axioms.

If µ(Uc) ≤ 2−c for all c, then (Ui) is a Martin-Löf test that succeeds on

Z. Hence Z is not Martin-Löf random and we are done.

In the other case, we have µ(Uc) > 2−c for some c. Then there must be

some length n such that more than a fraction 2−c of all strings of length n

have some initial segment enumerated into Uc, and this fact is provable in

PA. On the other hand, PA can prove that at most a fraction 2−c of all strings

of length n have an initial segment σ with K(σ) ≤ |σ| − c. (Otherwise the

weight condition (6) for prefix-free complexity would be violated, just like in

the proof of Theorem 3.3.1.) Hence PA proves the existence of some string

σ of length n such that MLRc(σ) is true and MLRc(σ) proves φ. Therefore,

PA proves φ itself, as required.

Remark 5.4.3. The proof for the second case (µ(Uc) > 2−c for some c)

can be seen as a special case of the conservation theorem for random proofs

153

as proven by Alexander Shen [4]. The proof strategy in this case consists of

generating a random string σ of length n and adding the axioms of MLRc(σ).

Another way of putting Theorem 5.4.2 is: for any Martin Löf random Z,

the intersection of the theories MLRc(Z) over all numbers c is just PA. The

same happens if we fix c and intersect over all Z instead. We don’t even need

to intersect over all sequences Z, a class of large enough measure suffices.

Theorem 5.4.4.

Let c be a natural number. Let φ be a sentence that is provable in

MLRc(Z) for every sequence Z ∈ A, where A is a subset of Cantor

space with µ(A) > 2−c. Then φ is also provable in PA.

It doesn’t matter that we also include non-random sequences Z in the

condition of the theorem, as MLRc(Z) will be inconsistent and φ will be

trivially provable in MLRc(Z).

Proof. Suppose that MLRc(Z) proves φ for every sequence Z ∈ A. Since

µ(A) > 2−c, there must be some length n such that MLRc(σ) proves φ for

more than a fraction 2−c of all strings σ of length n, and this fact is provable

in PA. On the other hand, PA can prove that at most a fraction 2−c of all

strings of length n have an initial segment σ with K(σ) ≤ |σ| − c. Just

like in the proof of Theorem 5.4.2 above, we conclude that PA proves φ, as

required.

Other theories related to MLRc(Z)

The article [4] investigates two other axiomatic theories that formalize the

fact that a sequence Z is Martin-Löf random. The first theory expands the

154

language of PA with a new function symbol Z, then adds an axiom

“Z(n) = Z(n)”

for every n ∈ N (where Z(n) is the actual value of the n’th digit of Z) and

the Martin-Löf randomness of Z can now, thanks to the new function symbol

Z, be expressed in just one axiom:

“∀n : K(Z↾n) ≥ n− c”.

Let’s call this theory MLR′
c(Z). This theory can certainly prove everything

that is deducible from MLRc(Z). Moreover, MLR′
c(Z) proves sentences like

Extc(Z↾n) = “∀m ≥ n ∃τ ∈ 2m (Z↾n ≺ τ and ∀i ≤ m : K(τ↾i) ≥ i− c)”,

which express the fact that the Z↾n can be extended to a string of any

length such that all initial segments of that string have high complexity.

This suggest that we also consider the theory MLR′′
c (Z) which contains the

axioms “Extc(Z↾n)” for all n, but without the extra function symbol Z.

It turns out that MLR′
c(Z) and MLR′′

c (Z) can prove exactly the same

sentences when they don’t involve the extra function symbol Z (see [4] for a

proof). In model theory terminology: MLR′
c(Z) is a conservative extension

ofMLR′′
c (Z). Both of these theories are also strictly stronger thanMLRc(Z).

In fact, the converse of Theorem 5.4.1 holds for these theories.

Theorem 5.4.5.

If there exists a sequence Y such that MLRc(Y), then there exists a

sequence Z such that MLR′′
c (Z) is consistent and proves all true Π0

1

sentences.

155

The proof is similar to Theorems 5.3.1 and 5.3.3.

Proof. Consider the Π0
1 class

A = {Y ∈ 2ω : ∀n(K(Y ↾n) ≥ n− c)},

which is non-empty by assumption. Let Z be the left-most (i.e. lexicograph-

ically least) element of A. Then MLR′′
c (Z) is consistent.

As in Theorems 5.3.1 and 5.3.3, it is now sufficient to prove that for

every program P that does not terminate, the theory MLR′′
c (Z) can prove

this non-termination.

For n ∈ N, Z↾n is the lexicographically first string τ of length n such that

Extc(τ). The formula “Extc(τ)” is Π0
1, as the only existential quantifier is

bounded, so we can enumerate all strings τ ′ ∈ 2n such that ¬Extc(τ ′). Let

sn be the first stage at which all strings that come before Z↾n have appeared

in this enumeration. We prove that from a program P , we can compute a

number n such that the computation P either terminates in less than sn

steps, or does not terminate at all.

Given a terminating program P and a number n, let s(P) be the number

of steps that P takes before halting. Let σ be the first string of length n

with Ks(P)(σ) ≥ n − c. If s(P) > sn, then we know that σ = Z↾n. On the

other hand, for every P that terminates we get a string σ of length n with

K(σ) < K(P, n) +O(1)

< K(P) +O(logn).

Given P , we can find an n that is large enough such that K(σ) < n − c.

For such an n, we know that σ is different from Z↾n, so P must have halted

156

within sn steps. Consequently, if a program P terminates at all, then it must

do so in less than sn steps.

Once again, this reasoning can be formalized inside PA. Having “Extc(Z↾n)”

as an axiom, it is provable that Z↾n is indeed the lexicographically least string

τ of length n with Extc(τ), as “¬Extc(τ ′)” is provable for all preceding strings

τ ′. Then, given n, it is provable that the value of sn satisfies its definition.

Finally, given P and taking n suitably large, it is provable (doing the above

proof inside PA) that P either halts within sn steps or does not terminate at

all.

Theorem 5.4.5 shows that MLR′′
c (Z) can be a strictly stronger theory

than MLRc(Z). However, when we intersect over all possible values of c, we

still get the same result as in Theorem 5.4.2.

Theorem 5.4.6.

Let Z be Martin-Löf random. Let φ be a sentence that is provable in

MLR′′
c (Z) for every c. Then φ is also provable in PA.

Proof. Identical to the proof of Theorem 5.4.2, using the fact that PA can

prove that at most a fraction 2−c of all strings σ of a given length satisfy

¬Extc(σ).

As an interesting corollary, consider the theory MLR′(Z) which is ob-

tained from MLR′
c(Z) by replacing the axiom

“∀n : K(Z↾n) ≥ n− c”

by the weaker axiom

“∃c ∀n : K(Z↾n) ≥ n− c”.

157

This theory is actually a conservative extension of PA.

Theorem 5.4.7.

If Z is Martin-Löf random and φ is a sentence in the language of PA

that is deducible from MLR′(Z), then φ is already provable in PA.

Proof. If φ is provable in MLR′(Z) then it is also provable in MLR′
c(Z)

for every c. By the earlier remarks, the theory MLR′
c(Z) is a conservative

extension of the theory MLR′′
c (Z), so φ is also provable in MLR′′

c (Z) for

every c. By Theorem 5.4.6, φ is provable in PA.

Theorem 5.4.7 expresses in a sense the idea that, since almost all se-

quences are Martin-Löf random, the fact that the sequence given by some

function symbol is Martin-Löf random should not give useful information.

5.5 Axioms expressing 2-randomness

A sequence is 2-random if and only if there exists a constant c such that

C(Z↾n) > n− c (28)

for infinitely many n ([43, 49], see also [48, 3.6.10] or [16, 6.11.6]). (Note that

because of the complexity dips for plain complexity, no sequence satisfies (28)

for all n.) So we can consider a theory 2RA,c(Z) that expresses that Z is

2-random using the axioms

“C(Z↾n) > n− c”

for all n ∈ A where A is some infinite set of natural numbers. For fixed Z

and c such that (28) for infinitely many n, the strongest consistent theory

158

among these is the one where A is maximal, i.e.

A = {n ∈ N : C(Z↾n) > n− c} .

The fact that 2-randomness implies Martin-Löf randomness is reflected

in these theories.

Theorem 5.5.1.

Any theory 2RA,c(Z) implies MLRc′(Z) for some c′.

Proof. Consider the machine M that on input σ tries to find a splitting

σ = ρτ such that U(ρ)↓. If successful, it outputs U(ρ)τ . Let d be the coding

constant for M , i.e.

C(σ) ≤ CM(σ) + d

for all σ. Suppose for contradiction that K(Z↾n) ≤ n − (d + c) for some

n. Then for m ≥ n, the string Z↾m has an M-description of length at most

m− (d+ c), and hence

C(Z↾m) ≤ m− (d+ c) − d = m− c

contradicting the axioms of 2RA,c(Z).

Are the consistent theories 2RA,c(Z) strictly stronger than the theories

MLRc(Z)? Can they prove all true Π0
1 sentences? Actually, we already asked

exactly this question as Question 5.3.4, so this is an open problem.

5.6 Axioms that give exact complexities

How much information the exact complexities of strings (i.e. true axioms of

the form “K(σ) = n”) contain, might depend a lot on the universal machine

used.

159

Theorem 5.6.1.

There is a universal machine M such that for any set X that contains a

string of any length, the axioms “K(σ) = K(σ)” for every string σ ∈ X

(where K(σ) is the numerical value of K(σ)) prove all true Π0
1 sentences.

Proof. Let U be the standard universal machine, as constructed in Section

2.4. Let H = {e ∈ N : φe(e)↓} be the halting set.

Define M as follows. If τ has an even length, let

M(1τ) =

U(τ) if U(τ)↓ and |U(τ)| ∈ H ,

↑ otherwise;

M(01τ) = U(τ).

If τ has an odd length, let

M(01τ) =

U(τ) if U(τ)↓ and |U(τ)| ∈ H ,

↑ otherwise;

M(001τ) = U(τ).

Finally, M is undefined on all other inputs. It is easy to see that M is a

universal machine. Now, if |σ| 6∈ H , then σ only has descriptions of even

length. If |σ| ∈ H , then σ has a shortest description of odd length. So from

the parity of the complexity of any string of length n, we can decide if n is

in the halting set or not. This argument can be done inside PA as well.

Note that the machine M constructed in the theorem is even provably

universal in the sense of Section 5.2. The theorem also works for plain com-

plexity C, by replacing the prefix-free universal machine U with the plain

160

universal machine V in the proof.

Question 5.6.2.

Is there a universal machine such that adding the exact complexities for

infinitely many strings doesn’t always prove all true Π0
1 statements?

This is possibly even the case for the standard universal machine U.

5.7 Summary

The main results from this chapter are summarized in Figure 11.

Does there exist A ⊆ 2<ω such that all true Π0
1 sentences are provable

with consistent axioms. . .

“C(σ) > |σ| − c”
for σ ∈ A

“K(σ) > |σ| − c”
for σ ∈ A

A contains at most one
string of each length.

Yes Yes

A contains infinitely
many initial segments of

a sequence.

Maybe
Note: axioms imply that

sequence is 2-random

Yes

A contains all initial
segments of a sequence.

Axioms are never
consistent

No
Note: axioms imply that

sequence is 1-random

Figure 11: Summary of results about the strength of theories whose
axioms express that certain strings have high complexities.

161

Bibliography

[1] Laurent Bienvenu, Adam Day, Mathieu Hoyrup, Ilya Mezhirov, and

Alexander Shen. A constructive version of Birkhoff’s ergodic theorem

for Martin-Löf random points.

[2] Laurent Bienvenu, Adam Day, Ilya Mezhirov, and Alexander Shen.

Ergodic-type characterizations of algorithmic randomness. In Programs,

Proofs, Processes, volume 6158 of Lecture Notes in Computer Science,

pages 49–58. Springer, Berlin/Heidelberg, 2010.

[3] Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang

Merkle. Separations of non-monotonic randomness notions. 6th Interna-

tional Conference on Computability and Complexity in Analysis (CCA

2009), 2009.

[4] Laurent Bienvenu, Andrei Romashchenko, Alexander Shen, Antoine

Taveneaux, and Stijn Vermeeren. The axiomatic power of Kolmogorov

complexity. To be published in the Annals of Pure and Applied Logic.

[5] Laurent Bienvenu, Glenn Shafer, and Alexander Shen. On the history of

martingales in the study of randomness. Journal Electronique d’Histoire

des Probabilités et de la Statistique, 5(1), 2009. http://www.jehps.net/

juin2009.html.

162

[6] Vasco Brattka, Joseph S. Miller, and André Nies. Randomness and

differentiability.

[7] Harry Buhrman, Dieter Van Melkebeek, Kenneth W. Regan, D. Sivaku-

mar, and Martin Strauss. A generalization of resource-bounded mea-

sure, with application to the BPP vs. EXP problem. SIAM Journal on

Computing, 30:576–601, 2000.

[8] Cristian S. Calude and André Nies. Chaitin ω numbers and strong

reducibilities. Journal of Universal Computer Science, 3(11):1162–1166,

1997.

[9] Gregory J. Chaitin. Computational complexity and Gödel’s incomplete-

ness theorem. ACM SIGACT News, (9):11–12, 1971.

[10] Gregory J. Chaitin. Information-theoretic limitations of formal systems.

Journal of the ACM, 21:403–424, 1974.

[11] Gregory J. Chaitin. A theory of program size formally identical to in-

formation theory. Journal of the ACM, 22:329–340, 1975.

[12] Gregory J. Chaitin. Incompleteness theorems for random reals. Advances

in Applied Mathematics, 8:119–146, 1987.

[13] Herman Chernoff. A measure of asymptotic efficiency for tests of a

hypothesis based on the sum of observations. Annals of Mathematical

Statistics, 23(4):493–507, 1952.

[14] Alonzo Church. On the concept of a random sequence. Bulletin of the

American Mathematical Society, 46:130–135, 1940.

[15] Barry Cooper. Computability Theory. Chapman & Hall, 2003.

163

[16] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness

and Complexity. Theory and Applications of Computability. Springer,

2011.

[17] William Feller. An Introduction to Computability Theory and its Appli-

cations. Wiley, New York, 1957.

[18] Johanna N. Y. Franklin, Noam Greenberg, Joseph S. Miller, and

Keng Meng Ng. Martin–Löf random points satisfy Birkhoff’s ergodic

theorem for effectively closed sets.

[19] Johanna N. Y. Franklin and Keng Meng Ng. Difference randomness.

Proceedings of the American Mathematical Society, 139:345–360, 2011.

[20] Péter Gács. Every sequence is reducible to a random one. Information

and Control, 70:186–192, 1986.

[21] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Math-

ematica und verwandter Systeme, i. Monatshefte für Mathematik und

Physik, 38:173–198, 1931.

[22] Paul R. Halmos. Measure Theory. D. Van Nostrand Company, Inc.,

1950.

[23] Wassily Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association, 58(301):13–

30, 1963.

[24] Bart Kastermans and Steffen Lempp. Comparing notions of randomness.

Theoretical Computer Science, 411(3):602–616, 2010.

[25] Steven M. Kautz. Degrees of random sets. PhD thesis, Cornell Univer-

sity, 1991.

164

[26] Andrey N. Kolmogorov. Three approaches to the quantitative definition

of information. Problems in Information Transmission, 1:1–7, 1965.

[27] Andrey N. Kolmogorov. On tables of random numbers. Sankhyā: The

Indian Journal of Statistics, Series A, 25(4):369–376, 1966.

[28] Dénes Kőnig. Theorie der endlichen und unendlichen Graphen.

Akademische Verlagsgesellschaft, Leipzig, 1936.

[29] Antońın Kučera. Measure, Π0
1-classes and complete extensions of PA.

In Recursion Theory Week (Oberwolfach, 1984), volume 1141 of Lecture

Notes in Mathematics, pages 245–259. Springer, Berlin, 1985.

[30] Martin Kummer. On the complexity of random strings (extended ab-

stract). In 13th Annual Symposium on Theoretical Aspects of Computer

Science, volume 1046 of Lecture Notes in Computer Science, pages 25–

36. Springer, 1996.

[31] Stuart A. Kurtz. Randomness and genericity in the degrees of unsolv-

ability. PhD thesis, University of Illinois at Urbana-Champaign, 1981.

[32] Michiel Van Lambalgen. Random sequences. PhD thesis, Universiteit

van Amsterdam, 1987.

[33] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity

and Its Applications. Springer Verlag, 1993.

[34] Elliott H. Lieb, Daniel Osherson, and Scott Weinstein. Elementary proof

of a theorem of Jean Ville. 2006, arXiv:cs/0607054.

[35] Donald W. Loveland. The Kleene hierarchy classification of recursively

random sequences. Transactions of the American Mathematical Society,

125(3):497–510.

165

[36] Donald W. Loveland. A new interpretation of the von Mises’ concept of

random sequence. Mathematical Logic Quarterly, 12(1):279–294, 1966.

[37] Donald W. Loveland. A variant of the Kolmogorov concept of complex-

ity. Information and Control, 15(6):510–526, 1969.

[38] Per Martin-Löf. The definition of random sequences. Information and

Control, 9:602–619, 1966.

[39] Per Martin-Löf. On the notion of randomness. In Intuitionism and proof

theory, proceedings of the summer conference at Buffalo, N.Y. 1968,

pages 73–78, 1970.

[40] Elliott Mendelson. Introduction to Mathematical Logic. Chapman and

Hall, fourth edition, 1997.

[41] Wolfgang Merkle. The Kolmogorov-Loveland stochastic sequences are

not closed under selecting subsequences. Journal of Symbolic Logic,

68(4):1362–1376, 2003.

[42] Wolfgang Merkle. The complexity of stochastic sequences. Journal of

Computer and System Sciences, 74(3):350–357, 2008.

[43] Joseph S. Miller. Every 2-random real is Kolmogorov random. Journal

of Symbolic Logic, 69(3):907–913, 2004.

[44] Joseph S. Miller and André Nies. Randomness and computability: open

questions. Bulletin of Symbolic Logic, 12(3):390–410, 2006.

[45] Joseph S. Miller and Liang Yu. On initial segment complexity and

degrees of randomness. Transactions of the American Mathematical So-

ciety, 360(6):3193–3210, 2008.

166

[46] Andrei A. Muchnik, Alexei L. Semenov, and Vladimir A. Uspensky.

Mathematical metaphysics of randomness. Theoretical Computer Sci-

ence, 207:263–317, 1998.

[47] James R. Munkres. Topology. Prentice Hall, second edition, 2000.

[48] André Nies. Computability and Randomness. Oxford University Press,

2009.

[49] André Nies, Frank Stephan, and Sebastiaan A. Terwijn. Randomness,

relativization and Turing degrees. Journal of Symbolic Logic, 70(2):515–

535, 2005.

[50] Marian B. Pour-El and J. Ian Richards. Computability in analysis and

physics. Perspectives in Mathematical Logic. Springer Verlag, 1989.

[51] Jan Reimann and Theodore A. Slaman. Measures and their random

reals.

[52] Marc Renault. Four proof of the ballot theorem. Mathematics Magazine,

80:345–352, 2007.

[53] Claus-Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Eine al-

goritmische Begründung der Wahrscheinlichkeitstheorie, volume 218

of Lecture Notes in Mathematics. Springer-Verlag, 1971. Available

online at http://www.leibniz-publik.de/de/fs1/object/display/

bsb00057178_00001.html.

[54] Claus-Peter Schnorr. Process complexity and effective random tests.

Journal of Computer and System Sciences, 7:376–388, 1973.

[55] Alexander Kh. Shen. On relations between different algorithmic defini-

tions of randomness. Soviet Mathematics Doklady, 38:316–319, 1989.

167

[56] Ray J. Solomonoff. A formal theory of inductive inference, part i. In-

formation and Control, 7:1–22, 1964.

[57] Ray J. Solomonoff. A formal theory of inductive inference, part ii. In-

formation and Control, 7:224–254, 1964.

[58] Frank Stephan. Martin-Löf random and PA-complete sets. In Logic

Colloquium ’02, volume 27 of Lecture Notes in Logic, pages 342–348.

Association for Symbolic Logic, 2006.

[59] Teiji Takagi. A simple example of the continuous function without

derivative. Proceedings of the Physico-Mathematical Society of Japan,

1:176–177, 1903.

[60] Jean Ville. Étude critique de la notion de collectif. Monographies des

probabilités. Gauthier-Villars, Paris, 1939. As PhD thesis available on-

line at http://www.numdam.org/item?id=THESE_1939__218__1_0.

[61] Richard von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math-

ematische Zeitschrift, 5:52–99, 1919.

[62] A. Wald. Die Widerspruchsfreiheit des Kollektivbegriffes der

Wahrscheinlichkeitsrechnung. In Ergebnisse eines mathematischen Kol-

loquiums, volume 8, pages 38–72, 1936.

[63] Yongge Wang. Randomness and complexity. PhD thesis, Fakultät für

Mathematik, Ruprecht Karls Universität Heidelberg, 1993.

